Not applicable.
The technology herein relates to an antenna for a receiving and/or transmitting device, in particular as a roof antenna for motor vehicles.
By way of example, DE 197 39 395 A1 discloses a broadcast radio receivers, for installation in motor vehicles. This receiver has a receiving section with at least one connection, via which further components can be connected. An antenna in the form of a rod can be plugged in above the receiving section.
An antenna for automobiles is also disclosed, for example, in DE 298 21 723 U1. The antenna has an antenna foot which comprises a protective cover in the form of a housing or shroud, and a baseplate which can be mounted on the roof of the automobile. Various electrical devices are accommodated in the internal space between the shroud and the baseplate. A line 12 leads to the actual antenna element devices, which project outward from the foot part. What is referred to as a combination antenna element is used for this purpose, which is provided at its lower end with a threaded projection, in order to make it possible then to screw the threaded antenna element into and out of a threaded bushing in the foot part.
In this case, further devices can also be accommodated in the antenna foot, in order in the end to make it possible to receive different frequency bands via one or more radio-frequency lines. Specifically, antennas such as these should be suitable, for example, for various networks in the mobile radio band (for example the D network or E network, as well as for the UMTS frequency band from about 1 900 MHz to 2 170 MHz). Furthermore, if required, it should also be possible to receive and process GPS signals and/or to receive VHF broadcasts or programs.
The antennas available on the market at the moment have been proven in principle, although different implementation and conversion principles are known.
However, against the background of the last-mentioned antenna of this generic type, there is a problem, in that an antenna such as this with what is referred to as a combination antenna element is now also intended to be suitable for the UMTS Standard in addition to the normal mobile radio band in the DoCoMo band, in the AMPS band, and/or in the GSM 900 band i.e., in the 810 to 960 MHz band) and/or in the GSM 1 800 and/or in the GSM 1 900 band (i.e., in the 1 710 and 1 990 MHz band). This is because an antenna which is suitable for this overall range implies that, for the higher frequencies which can be transmitted, the antenna elements which are provided for this high frequency range must be designed to be smaller, that is to say shorter, and this also applies to the antenna bracket However, this would then lead to the antenna having to be modified overall, including the existing antenna element. However, this is contrary to what is referred to as the “identical parts” concept, on the basis of which, for example, one antenna element type should be used for different purposes.
A two-band antenna has been disclosed, for example, in the B1 version of U.S. Pat. No. 6,191,747. This is a multiband antenna using coils for phase shifting in order to form a monopole gain antenna element.
A two-band motor vehicle antenna which forms this generic type and has an antenna foot has been disclosed in WO 0 171 847 A1, in which a connecting line is connected to the antenna element arrangement via an intermediate line piece.
Against the background of the prior art of this generic type, the object of the exemplary illustrative non-limiting technology herein is therefore to provide an improved multiband antenna arrangement.
The technology herein provides an intrinsically highly proven motor vehicle antenna that can now also be used, for example, for the UMTS Standard or other considerably higher frequency band, and without any reduction to the physical height or physical size. In an exemplary illustrative implementation, this is possible because the electrical line which leads to an antenna element for the higher frequency range or a bracket which leads to the antenna element for the higher frequency range is provided with an extension. The extension can be implemented in such a way that the supply lines are lengthened beyond a connecting point or contact point via which the antenna element makes electrical contact with the supply line, and preferably ends freely. If the electrical supply line is formed by an electrically conductive bracket, then the bracket can be lengthened beyond the contact-making point with the first antenna element, with the contact-making point in this case at the same time being used as a connecting point or even as an attachment point for the antenna element. However, the extension need not necessarily be provided such that it runs continuously over the electrical wire or bracket, but may also be in the form of a line section that is passed back. It is also possible to use an extension which points downward via the connecting point between the electrical supply line or bracket and the electrical antenna element which is provided for the higher frequency range, and which possibly ends shortly before the motor vehicle roof.
Extensions which, for example, are in the form of a disk or of a plate are also suitable, and preferably are provided at the connecting point between the electrical supply line or bracket and the antenna element which is provided for the higher frequency range.
However, normally, not only is one antenna element used, preferably in the form of a bolt, which is provided for the higher frequency range, but a coil followed by a further antenna element is then used in the extension of this antenna element.
In the process, it should be remembered that the entire antenna element arrangement including the antenna bracket acts as an antenna element for the low frequency ranges, that is to say for long waves, medium waves, short waves and the VHF band. For the DoCoMo, the AMPS and the GSM 900 bands (which corresponds to 810 to 960 MHz), the antenna bracket and the lower part of the actual antenna clement arrangement, that is to say generally of the antenna clement bolt which is provided for his purpose, still act together with one part of the coil that has been mentioned as antenna elements. However, if the frequency is raised further, that is to say for example to the GSM 1 800 and GSM 1 900 bands (which correspond to 1 710 MHz to 1 990 MHz), only the antenna bracket and the lower antenna bolt then still act as antenna elements. However, only the antenna bracket and its extension then still act as antenna elements in the UMTS band (1 900 to 2 170 MHz).
These and other features and advantages will be better and more completely understood by referring to the following detailed description of exemplary non-limiting illustrative implementations in conjunction with the drawings of which:
The transmitting and/or receiving device shown in
For this purpose, the housing 5 preferably has a protective cover 5a in the form of a shroud, and a bottom plate 5b, which can be attached by suitable measures to the metal bodywork sheet 1, for example using adhesive layers, insulating materials etc.
At least one opening 9 is also generally provided in the metal bodywork sheet 1, via which electrical connecting lines, coaxial cables etc. can be passed to the antenna from the interior of the motor vehicle. For this purpose, the bottom plate of the antenna housing is also fitted in an appropriate manner on the motor vehicle roof. For example a threaded dome in the form of a hollow threaded rod may normally be used (although this is not shown in any more detail in the drawings but has been known for a long time). The dome may be anchored in the bottom plate and projects into the interior of the motor vehicle through the opening 9 in the motor vehicle roof. The lines are then passed inward through the interior of the threaded dome. A central nut can then be screwed to the threaded dome from the interior of the vehicle, in order to anchor the antenna firmly on the motor vehicle roof in this way.
A connecting line 13 leads from an antenna point 11, which is provided in the antenna foot 3, to the actual antenna device 15 which, in the illustrated exemplary non-limiting arrangement, comprises a first antenna element 17, a lock-out coil 19 which is preferably arranged in an axial extension of the first antenna element 17, and a second antenna element 21 which is once again connected in an axial extension of the lock-out coil 19.
The first antenna element 17 may, for example, comprise a metallically conductive bolt or have a bolt structure. The second antenna element 21 should be as elastic as possible and may, for example, be formed from a glass fiber core around which a corresponding electrical conductive arrangement in the form of a coil is wound. All possible antenna structures are feasible which may be used and are suitable for the respective purpose.
In the exemplary illustrative non-limiting implementation, the entire antenna element arrangement including the antenna bracket acts as an antenna element for low frequency ranges, that is to say for long waves, medium waves, short waves and the VHF band. For the DoCoMo, the AMPS, and the GSM 900 band (which corresponds to 810 to 960 MHz), the antenna bracket and the lower part of the actual antenna element arrangement, that is to say generally of the antenna element bolt which is provided for this purpose, still act together with a part of the coil which has been mentioned as antenna elements. However, if the frequency is raised further, namely for example in the GSM 1 800 and GSM 1 900 band (which corresponds to 1 710 MHz to 1 990 MHz), only the antenna bracket and the lower antenna bolt still act as antenna elements. In the UMTS band (1 900 to 2 170 MHz), only the antenna bracket and its extension then still act as antenna elements.
For high frequency bands, for example in the E network (approximately 1 800 MHz) or in particular for the UMTS Standard (approximately 1 900 to 2 170 MHz) as well, the coil 19 provides blocking, so that only the first antenna element 17 together with the electrical connecting line 13 act as an antenna element for this purpose.
The connecting line 13 which has been mentioned may in this case preferably also be formed from an at least slightly elastic or partially elastic bracket 13′, which is preferably prestressed in the antenna element direction. This means that the antenna bracket has a tendency to rest in a prestressed manner on the lower connecting point of the antenna element (in the interior of the housing) when the antenna element is installed, so that a permanent electrical contact can be provided here without any problems. The antenna element arrangement 15 can in this case normally be connected to the antenna housing 5 by means of a screw connection, so that the antenna, particularly when motor vehicles are passing through a car wash, can be unscrewed in advance without any problems, and can then be screwed on again. The actual antenna element arrangement 15 which can be screwed to the housing is, in the end, held and supported via the housing itself.
In order now to make it possible to use this antenna arrangement for the high frequency band ranges as well, matched to the high frequency band range, the first antenna element, preferably in the form of a bolt 17, and also the electrical connecting line 13 could be appropriately reduced in size.
However, since this is contrary to the identical parts concept, on the basis of which, for example, an already existing antenna clement arrangement which is also used for other purposes should also be used in the present case, this means that there is a need to look for other solutions.
According to an exemplary illustrative non-limiting arrangement, an extension 25 is provided for this purpose in the exemplary non-limiting arrangement as shown in
The length and width of the extension 25 must be designed such that the antenna is correctly tuned overall for the desired higher frequency range. This tuning can be carried out in various ways, as described in the following text.
Apart from an extension according to the exemplary illustrative non-limiting implementation shown in
In the exemplary illustrative non-limiting implementation shown in
In the exemplary illustrative non-limiting implementation shown in
While the technology herein has been described in connection with exemplary illustrative non-limiting implementations, the invention is not to be limited by the disclosure. The invention is intended to be defined by the claims and to cover all corresponding and equivalent arrangements whether or not specifically disclosed herein.
Number | Date | Country | Kind |
---|---|---|---|
102 07 703 | Feb 2002 | DE | national |
This application is the U.S. national phase of international application PCT/EP03/01751 filed 20 Feb. 2003, which designated the U.S.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP03/01751 | 2/20/2003 | WO | 00 | 10/3/2003 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO03/07163 | 8/28/2003 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4764773 | Larsen et al. | Aug 1988 | A |
4862183 | Blaese | Aug 1989 | A |
5128685 | Shinnai et al. | Jul 1992 | A |
5343214 | Hadzoglou | Aug 1994 | A |
5999132 | Kitchener et al. | Dec 1999 | A |
6191747 | Cosenza | Feb 2001 | B1 |
6259411 | Yanagisawa et al. | Jul 2001 | B1 |
Number | Date | Country |
---|---|---|
197 39 395 | Mar 1999 | DE |
298 21 723 | Jun 1999 | DE |
0 557 794 | Feb 1993 | EP |
0 862 239 | Sep 1998 | EP |
0 829 112 | Oct 1999 | EP |
0 954 054 | Nov 1999 | EP |
1 263 079 | Dec 2002 | EP |
1 291 967 | Mar 2003 | EP |
9741621 | Nov 1997 | WO |
9810485 | Mar 1998 | WO |
9815031 | Apr 1998 | WO |
9848479 | Oct 1998 | WO |
9858422 | Dec 1998 | WO |
9943042 | Aug 1999 | WO |
9967851 | Dec 1999 | WO |
0171847 | Sep 2001 | WO |
02069444 | Sep 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20040056809 A1 | Mar 2004 | US |