The present invention relates to a motor and a compressor.
Scroll type or rotary type compression elements are adopted in compressors and the compression elements need lubricating oil since they are mechanical mechanisms. Therefore, an oil reservoir is provided on a bottom of a compressor, lubricating oil in the oil reservoir is led to the compression elements, and then the lubricating oil is returned to the oil reservoir through straight cut surfaces (referred below to as D-cuts since each of four surface cuts looks D-shape) provided on an outer periphery of a laminated stator core of a motor for driving the compression mechanism. The straight cut surfaces provided on the outer periphery of the stator laminated stator core are indispensable as flow passages for the lubricating oil flowing through a compression mechanism part, and the larger an area of the D-cuts, the easier the lubricating oil flows back, thus contributing an increase in material utilization rate. JP-A-2003-269335 discloses a construction, in which cuts are provided on an outer periphery of a stator core of a motor and a refrigerant flows through the core cuts between a casing and the stator core.
As a result of various experiments and examinations, a motor provided with D-cuts involves a problem of large vibration and noise.
It is an object of the invention to provide a motor that can ensure a flow passage for lubricating oil as in the conventional art and involves small vibration and noise, and a compressor that uses the motor.
The invention provides a motor comprising a stator comprising a laminated stator core made of laminated stator core plates in which a plurality of slots are formed and armature windings are provided in the slots and straight cut surfaces are formed on a circular outer peripheral surface of a laminated stator core, and a rotor rotatably supported in an inner peripheral side of the laminated stator core with a predetermined air gap therebetween, and wherein the straight cut surfaces of the laminated stator core plates are circumferentially displaced every predetermined laminated stator core plates so that the straight cut surfaces are uniformly distributed in an axial and a circumferential direction of the laminated stator core. Therefore, while a flow passage for lubricating oil is ensured as in the conventional art, local magnetic saturation of the stator core is dissolved and a cogging torque and an induced voltage waveform distortion rate are improved.
Other objects, features and advantages of the invention will become apparent from the following description of the embodiments of the invention taken in conjunction with the accompanying drawings.
a and 2b are views illustrating results of Finite Element Method analysis for a stator of the induction motor;
a is a perspective view showing circumferential displacement of a laminated stator core of an induction motor according to a first embodiment of the invention;
b is a perspective view showing a rotor of the induction motor according to the first embodiment of the invention;
a is a perspective view showing circumferential displacement of a laminated stator core of the self-start type induction motor according to the second embodiment of the invention;
b is a perspective view showing a rotor of the self-start type induction motor according to the second embodiment of the invention;
a is a perspective view showing circumferential displacement of a laminated stator core of the synchronous motor according to the third embodiment of the invention;
b is a perspective view showing a rotor of the synchronous motor according to the third embodiment of the invention;
An embodiment relates to a motor used in air conditioners, chillers, showcases, etc. and a compressor that uses the motor.
a and 2b show Finite Element Method analysis results of the stator shown in
In order to solve such problem, a motor according to a first embodiment of the invention is constructed as shown in
When a pitch of the slots 3 is 12° and the D-cuts 5 are circumferentially displaced at n (n=1, 2, . . . ) times the slot pitch, there are the following four cases (a) to (d);
case (a): a circumferential pitch of the D-cuts equal to the slot pitch, that is, 12° pitch-8 tiers stator core;
case (b): a circumferential pitch of the D-cuts twice the slot pitch, that is, 24° pitch-4 tiers stator core;
case (c): a circumferential pitch of the D-cuts three times the slot pitch, that is, 36° pitch-3 tiers stator core; and
case (d): a circumferential pitch of the D-cuts four times the slot pitch, that is, 48° pitch-2 tiers stator core.
According to the present embodiment, the laminated stator core is made uniform in the core back area in the axial and circumferential directions, so that a local magnetic saturation of the stator core is dissolved and a flow passage for a lubricating oil can be ensured as in the conventional art and a cogging torque and an induced voltage waveform distortion rate are improved. As a result, it is possible to reduce vibration and noise.
A compression chamber 19, which is positioned on an outermost side among compression chambers defined by the fixed scroll member 13 and the orbiting scroll member 16 moves toward centers of the both scroll members 13, 16 with the orbital movement and its volume is gradually decreased.
When the compression chamber 19 reaches near the centers of the both scroll members 13, 16, a compressed gas in the compression chamber 19 is discharged from a discharge port 20 communicated to the compression chamber 19. The compressed gas as discharged passes through a gas passage (not shown) provided on the fixed scroll member 13 and a frame 21 to reach an interior of a pressure vessel 22 in a lower region of the frame 21 to be discharged outside the compressor through a discharge pipe 23 provided on a side wall of the pressure vessel 22.
Also, with the compressor, a synchronous motor 24 is sealedly received in the pressure vessel 22 to rotate at a constant speed to perform a compressing operation.
An oil reservoir 25 is provided below the synchronous motor 24. A pressure difference produced by rotational movements causes an oil in the oil reservoir 25 to pass through an oil hole 26 provided in the crankshaft 27 to be fed for lubrication of sliding portions of the orbiting scroll member 16 and the crankshaft 27, a ball bearing, etc.
The synchronous motor 24 comprises a synchronous motor composed of the stator 1 and the rotor 7 as illustrated in
When the motor in the invention is applied to a drive motor for the compressor, it is possible to realize making a constant-speed compressor high in efficiency. Also, an air conditioner making use of the compressor can realize an air conditioner of high efficiency and low noise.
While the embodiment has been described with respect to an example, in which the laminated stator core plates are displaced in the circumferential direction stepwise in two tiers, three tiers, four tiers, and eight tiers, a construction, in which the laminated stator core plates each are continuously displaced in the circumferential direction, is also conceivable. That construction, in which the laminated stator core plates each are circumferentially displaced continuously, is highest in effects of reduction in cogging torque. On the other hand, that construction, in which the laminated stator core plates are circumferentially displaced stepwise and the number of tiers is as small as possible, produces an advantage that manufacture in less processes is possible.
It should be further understood by those skilled in the art that although the foregoing description has been made on embodiments of the invention, the invention is not limited thereto and various changes and modifications may be made without departing from the spirit of the invention and the scope of the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
2005-039945 | Feb 2005 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
7094029 | Taylor et al. | Aug 2006 | B2 |
20020096885 | Gomez et al. | Jul 2002 | A1 |
20060026818 | Stewart et al. | Feb 2006 | A1 |
20060181173 | Takahashi et al. | Aug 2006 | A1 |
20070069591 | LeFlem | Mar 2007 | A1 |
Number | Date | Country |
---|---|---|
1384588 | Dec 2002 | CN |
11-125183 | May 1999 | JP |
A-2003-269335 | Sep 2003 | JP |
Number | Date | Country | |
---|---|---|---|
20060181173 A1 | Aug 2006 | US |