The disclosed embodiment relates to a motor control apparatus.
A motor control apparatus that can continuously operate even if a momentary power interruption occurs in a power supply is known.
According to one aspect of the disclosure, there is provided a motor control apparatus. The motor control apparatus includes a main circuit including a converter configured to convert AC power supply into DC power supply, a smoothing capacitor connected in parallel with the DC power supply, and an inverter configured to convert the DC power supply into AC power supply to drive a motor, a voltage detector configured to detect DC voltage of the main circuit, and a controller. The controller includes a position controller configured to generate a speed command on the basis of a positional command and a motor position, and a speed controller configured to generate a torque command on the basis of the speed command and a motor speed. The controller is configured to control the inverter on the basis of the torque command The controller includes a torque limiter configured to start first torque limitation which limits a commanded torque based on the torque command to a first torque or less in a case where the voltage detector detects that the DC voltage falls below a predetermined voltage, and to cancel the first torque limitation in a case where the voltage detector detects that the DC voltage exceeds the predetermined voltage. The controller includes a speed limiter configured to limit a commanded speed based on the speed command to a first speed or less in a case where the torque limiter cancels the first torque limitation.
Hereinbelow, the embodiment will be explained with reference to the drawings.
<Configuration of Motor Control Apparatus>
First, a functional configuration of a motor control apparatus 1 according to this embodiment will be described with reference to
The converter 2 converts AC electric power supplied from an AC power supply 7 into DC electric power. The smoothing capacitor 3 is connected to a positive-side DC bus line 8 and a negative-side DC bus line 9 so as to be parallel to a DC power supply, and smooths the DC electric power converted by the converter 2. The inverter 4 converts the DC electric power into AC electric power on the basis of a control signal S1 (for example, a PWM signal) from the controller 6, and drives a motor 10. The converter 2, the smoothing capacitor 3, the inverter 4 and other parts are included in a main circuit 11.
The voltage detector 5 is connected to the positive-side DC bus line 8 and the negative-side DC bus line 9, and detects a DC voltage of the main circuit 11. Further, the voltage detector 5 sets, using parameters, a predetermined voltage serving as an undervoltage threshold value, generates and outputs a warning signal S2 to a master controller 12 if the DC voltage falls below the predetermined voltage, and stops the output of the warning signal S2 if the DC voltage exceeds (restores) the predetermined voltage. The master controller 12 outputs a torque limitation signal (not illustrated) to a function enabling and disabling processor 20, which will be described later, of the controller 6 while the warning signal S2 is being inputted from the voltage detector 5. The controller 6 mainly controls the inverter 4 on the basis of a positional command Pr from the master controller 12.
It should be noted that, in the description above, the voltage detector 5 outputs the warning signal S2 to the master controller 12, thereby performing first torque limitation via the master controller 12. However, this embodiment is not limited thereto. That is, the voltage detector 5 may directly output the warning signal S2 to the controller 6, so as to perform the first torque limitation without via the master controller 12.
A position detector 13 optically or magnetically detects the motor position (for example, angle of rotation) of the motor 10 to generate and output positional data to the controller 6 as a pulse signal S3. The controller 6 receives this pulse signal S3 as a fed back motor position Pfb (see
<Configuration of Controller>
Next, a functional configuration of the controller 6 will be described with reference to
The position controller 14 generates a speed command Vr on the basis of a positional deviation Pe between the positional command Pr from the master controller 12 and the motor position Pfb fed back from the position detector 13. The speed limiter 15 limits a commanded speed based on the speed command Vr (hereinafter, referred to as a commanded speed Vr as appropriate) to a predetermined speed limit value Vlim or less. The speed limit value Vlim is set to a given value as a parameter, and is varied by the limit value varying part 18. The speed limiting function performed by the speed limiter 15 is enabled by the function enabling and disabling processor 20 when first torque limitation, which will be described later and is performed by the torque limiter 17, is canceled, and is disabled by the function enabling and disabling processor 20 (corresponding to an example of a function disabling processor) when the positional deviation Pe becomes a predetermined positional deviation or less. The speed limiter 15 actually starts to limit the speed in the case where commanded speed Vr becomes the speed limit value Vlim or more during the time when this function is being enabled, and cancels the speed limit in the case where the commanded speed Vr falls below the speed limit value Vlim
The speed controller 16 generates a torque command Tr on the basis of a speed deviation Ve between the speed command Vr and the motor speed Vfb fed back from the position detector 13. The torque limiter 17 limits a commanded torque based on the torque command Tr (hereinafter, referred to as a commanded torque Tr as appropriate) to a predetermined torque limitation value Tlim or less. The torque limitation value Tlim is set to a given value as a parameter. The torque limiting function performed by the torque limiter 17 is enabled by the function enabling and disabling processor 20 when the torque limitation signal described above is inputted from the master controller 12, and is disabled by the function enabling and disabling processor 20 when the input of the torque limitation signal is stopped. The torque limiter 17 actually starts to limit the torque in the case where the commanded torque Tr becomes the torque limitation value Tlim or more during the time when this function is being enabled, and cancels the torque limitation in the case where the commanded torque Tr falls below the torque limitation value Tlim
It should be noted that, in this embodiment, the torque limitation which limits the commanded torque Tr described above to the torque limitation value Tlim (=T1. See
The torque command Tr from the speed controller 16 is converted into the control signal S1 described above, and is outputted to the inverter 4. Note that, the controller 6 may include a torque controller (not illustrated). This torque controller converts the torque command Tr from the speed controller 16 into a current command, generates a voltage command on the basis of this current command and the fed back motor current, and generates a control signal S1 on the basis of this voltage command.
The limit value varying part 18 varies the speed limit value Vlim of the speed limiter 15. The range and the mode of variation are set in an arbitrary manner using, for example, an upper limit value, a lower limit value, variable duration, or other information as parameters. As for the mode of variation, various types may be possible. For example, the speed limit value Vlim may be varied in a manner such that the commanded speed Vr linearly changes with a constant acceleration or deceleration, or the speed limit value Vlim may be varied in a manner such that the commanded speed Vr curvedly changes by varying the acceleration or the like. In the case where the acceleration or the like is varied, it may be varied, for example, in accordance with differences between the speed limit value Vlim and a positional command speed dP, which is a time differential value of the positional command Pr. In this embodiment, as illustrated in
The gain adjustor 19 reduces at least one of a position loop gain of the position controller 14 and a speed loop gain of the speed controller 16 in either of the following cases: a case where the first-torque limiting function performed by the torque limiter 17 is disabled and a case where the speed limiting function performed by the speed limiter 15 is enabled. Further, in the case where the positional deviation Pe becomes a predetermined positional deviation or less, the gain adjustor 19 restores the reduced loop gain to a value before the loop gain is reduced. Note that this gain adjustor 19, which restores this loop gain, corresponds to an example of the function disabling processor.
<Operation Performed in the Case Where Power Supply Voltage Sag in Main Circuit Occurs>
Next, with reference to
If the voltage detector 5 detects that the DC voltage of the main circuit 11 falls below a predetermined voltage V0 (time t1), the voltage detector 5 generates and outputs the warning signal S2 to the master controller 12, and the master controller 12 outputs the torque limitation signal to the function enabling and disabling processor 20, as described above. With this operation, the function enabling and disabling processor 20 enables the torque limiting function performed by the torque limiter 17. At this time, as illustrated in
With this first torque limitation performed, the motor speed Vfb is reduced, and with an increase in the positional deviation Pe, the commanded speed Vr increases. Note that the positional command speed dP, the commanded speed Vr, and the motor speed Vfb take almost the same value until time t1.
Subsequently, if it is detected that the power supply voltage in the main circuit is restored from the reduced voltage and exceeds the predetermined voltage V0 (time t2), the voltage detector 5 stops outputting the warning signal S2 to the master controller 12, and the master controller 12 stops outputting the torque limitation signal to the function enabling and disabling processor 20. With this operation, the function enabling and disabling processor 20 disables the torque limiting function performed by the torque limiter 17. Since the torque limiter 17 performs the first torque limitation until just before this disabling, a timing at which the torque limiting function performed by the torque limiter 17 is disabled and a timing at which the torque limiter 17 actually cancels the first torque limitation, are almost the same timing.
Once the first torque limitation performed by the torque limiter 17 is canceled, the function enabling and disabling processor 20 enables the speed limiting function performed by the speed limiter 15. Further, at this time, the limit value varying part 18 latches the speed limit value Vlim to the speed V2, which is a motor speed at the time when the first torque limitation is canceled. With this operation, the commanded speed Vr at the time when the first torque limitation is canceled is faster than or equal to the speed limit value Vlim (=V2), and hence, the speed limiter 15 starts the speed limitation at once. In other words, in this example, a timing at which the speed limiting function performed by the speed limiter 15 is enabled and a timing at which the speed limiter 15 actually starts the speed limitation, are almost the same timing Subsequently, the limit value varying part 18 increases the speed limit value Vlim to the speed V1, which is faster than the speed V2, at a fixed rate. As a result, as illustrated in
Subsequently, if the commanded speed Vr falls below the speed limit value Vlim (=V1) as the positional deviation Pe decreases (commanded speed Vr falls outside the commanded speed limitation), the speed limiter 15 cancels the speed limitation (time t3). Then, if the positional deviation Pe becomes a predetermined positional deviation or less (time t4), the function enabling and disabling processor 20 disables the speed limiting function performed by the speed limiter 15. Note that, after time t2, the commanded speed Vr and the motor speed Vfb take almost the same values.
On the other hand, if the first torque limiting function performed by the torque limiter 17 is disabled (at the same timing when the torque limiter 17 cancels the first torque limitation in the example illustrated in
It should be noted that
<Effect of the Embodiment>
As described above, in the motor control apparatus 1 according to this embodiment, in the case where the voltage detector 5 detects that the DC voltage of the main circuit 11 falls below the predetermined voltage V0, the torque limiter 17 limits the commanded torque Tr to the torque limitation value Tlim (=T1) or less. This makes it possible to drive the motor 10 with low torque and reduce the electric power consumption, thereby making it possible to keep driving the motor 10 even in the case where the power supply voltage sag occurs in the main circuit due to a momentary power interruption or the like.
It should be noted that there is a possibility that, by performing the first torque limitation, the motor 10 cannot follow the positional command Pr, so that the positional deviation Pe increases. In this case, the motor speed Vfb may suddenly increase due to the speed command Vr corresponding to the increased positional deviation Pe when the power supply voltage in the main circuit is restored, and the motor 10 may overshoot and stop due to occurrence of an overspeed alarm AL or the like (the motor speed at this time is illustrated with the dot-and-dash line Vfb′ in
In this respect, in this embodiment, when the torque limiter 17 cancels the first torque limitation, the speed limiter 15 limits the commanded speed Vr to the speed limit value Vlim (=V1) or less. With this operation, even if the positional deviation Pe increases during the torque limitation, it is possible to prevent the excessive speed command Vr corresponding to the increased positional deviation Pe from being outputted to the speed controller 16 at the time of cancellation of the torque limitation, and to control the motor 10 so as to operate at appropriate speeds. Thus, it is possible to prevent the motor 10 from overshooting, thereby avoiding stopping due to, for example, occurrence of the overspeed alarm AL, and to prevent the motor 10 from stopping at the time when the power supply voltage in the main circuit is restored.
The torque limiter 17 and the speed limiter 15 correspond to an example of means for keeping a motor operating without stopping even if a momentary power interruption or a power supply voltage sag in the main circuit occurs described in claims.
Further, this embodiment can also provide the following effect. More specifically, in the case where there is a deviation between the speed limit value Vlim (=V1) and the motor speed Vfb at the time when the power supply voltage in the main circuit is restored, there is a possibility that the speed suddenly changes when the speed limitation by the speed limiter 15 starts. To address this, in this embodiment, the limit value varying part 18 varies the speed limit value Vlim of the speed limiter 15 to gradually change the commanded speed Vr from the speed V2 to the speed V1 with a predetermined acceleration, and thereby it is possible to avoid sudden acceleration of the motor 10 at the time of starting of the speed limitation and reduce the shock to the apparatus, and at the same time, it is possible to make the operation of the motor 10 smooth.
Further, this embodiment can also provide the following effect. More specifically, in the case where the speed limiter 15 performs the speed limitation, the motor 10 may suddenly decelerate when the commanded speed Vr falls below the speed V1 with the decrease in the positional deviation Pe and falls outside the commanded speed limitation (in other words, when the speed controller 16 decreases to follow the original speed command Vr), which may cause the shock to the apparatus. To address this, in this embodiment, at the time when the power supply voltage in the main circuit is restored, the gain adjustor 19 reduces at least one of the position loop gain of the position controller 14 and the speed loop gain of the speed controller 16. With this operation, the responsiveness of the motor 10 can be decreased, which makes it possible to relax the change in speeds when the commanded speed Vr falls outside the commanded speed limitation. This makes it possible to prevent the motor 10 from suddenly decelerating, thereby reducing the shock to the apparatus, and at the same time, to make the operation of the motor 10 smooth. Note that the gain adjustor 19 in this case corresponds to an example of a change relaxing part.
Further, the gain adjustor 19 reduces the gain when the first torque limitation is canceled or when the speed limitation starts. Thus, even at the time when the speed limitation starts, it is possible to obtain the effect resulting from varying the speed limit value Vlim described above and the effect of relaxing the sudden change in the commanded speed Vr in a synergistic manner. Note that, with the reduction in the gain by the gain adjustor 19, it is possible to obtain the effect of relaxing the change in the commanded speed Vr when the speed limitation starts. Thus, in this embodiment, varying the speed limit value Vlim by the limit value varying part 18 may not be performed.
Further, particularly in this embodiment, in the case where the positional deviation Pe between the positional command Pr and the motor position Pfb becomes a predetermined positional deviation or less, the function enabling and disabling processor 20 cancels the speed limitation performed by the speed limiter 15, and the gain adjustor 19 restores the loop gain to the value before the loop gain is reduced. With this operation, it is possible to reliably prevent the situation in which the speed limitation is not canceled or the loop gain is not restored to the value before the loop gain is reduced, so that the normal motor control thereafter is affected.
<Modification examples>
It should be noted that the present disclosure is not limited to the embodiment described above, and various modifications may be possible without departing from the scope or the technical idea of the present disclosure. Hereinbelow, these modification examples will be described sequentially.
(1) Case Where the Commanded Speed is Gradually Reduced by Varying the Speed Limit Value
In the embodiment described above, the sudden change in the commanded speed is relaxed by reducing the loop gain at the time when the commanded speed Vr falls outside the commanded speed limitation. However, the method of relaxing the change is not limited to this. For example, the sudden change in the commanded speed Vr may be relaxed by varying the speed limit value by the limit value varying part 18 to gradually decelerate the commanded speed Vr. With reference to
As illustrated in
Next, with reference to
According to the present disclosure, on the basis of the positional deviation Pe according to the motor position Pfb, the limit value varying part 18A varies the speed limit value Vlim of the speed limiter 15 in a manner such that the commanded speed Vr decelerates from the speed V1 at a predetermined deceleration, and decelerates the motor 10 to stop in a state where the speed limitation is applied. With this operation, it is possible to prevent the motor 10 from suddenly decelerating, thereby reducing the shock to the apparatus, and at the same time, to make the operation of the motor 10 smooth. Further, by starting decelerating at a timing when the positional deviation Pe and the deceleration distance L are substantially equal, it is possible to accurately perform positioning on a target position.
(2) Case Where the Controller Includes a Low-Pass Filter
In addition to the method described above, the change occurring when the commanded speed Vr falls outside the commanded speed limitation may be relaxed, for example, by disposing a low-pass filter that removes a high frequency component in the speed command Vr. With reference to
As illustrated in
According to this modification example, it is possible to suppress the sudden change in the commanded speed Vr and prevent the motor 10 from suddenly decelerating, thereby reducing the shock to the apparatus, and at the same time, to make the operation of the motor 10 smooth. Further, the filter function is disabled when the positional deviation Pe becomes the predetermined positional deviation or less. Thus, it is possible to reliably prevent the situation in which the filter function of the low-pass filter 21 is not disabled, so that the normal motor control thereafter is affected.
(3) Case Where Limitation is Applied to a Negative-Side Torque
In addition to the methods described above, the change occurring at the time when the commanded speed Vr falls outside the commanded speed limitation may be relaxed, for example, by limiting, by the torque limiter 17, fluctuations of the torque command Tr toward the negative side when the commanded speed Vr falls outside the commanded speed limitation. With reference to
As illustrated in
Further, in addition to the embodiment and modification examples described above, it may be possible to combine the methods according to at least one of the embodiment described above and each of the modification examples, and use it as appropriate.
Further, the present disclosure is implemented with various modifications without departing from the scope of the present disclosure, although examples thereof are not illustrated herein.
This is a continuation application PCT/JP2012/054607, filed Feb. 24, 2012, which was published under PCT article 21(2) in English.
Number | Name | Date | Kind |
---|---|---|---|
5428285 | Koyama | Jun 1995 | A |
5801509 | Sawa et al. | Sep 1998 | A |
6081093 | Oguro et al. | Jun 2000 | A |
6315081 | Yeo | Nov 2001 | B1 |
6328551 | Takatsugi | Dec 2001 | B1 |
6462492 | Sakamoto | Oct 2002 | B1 |
6515442 | Okubo | Feb 2003 | B1 |
6683428 | Pavlov | Jan 2004 | B2 |
7215089 | Toyozawa | May 2007 | B2 |
7331208 | Fujibayashi | Feb 2008 | B2 |
7344003 | Kimura | Mar 2008 | B2 |
7348745 | Okita | Mar 2008 | B2 |
7498761 | Iwashita | Mar 2009 | B2 |
7541763 | Aono | Jun 2009 | B2 |
7791911 | Kaitani | Sep 2010 | B2 |
7902780 | Okita | Mar 2011 | B2 |
7911172 | Ikeda | Mar 2011 | B2 |
7915851 | Hishikawa | Mar 2011 | B2 |
7969113 | Ide | Jun 2011 | B2 |
20030146723 | Pavlov | Aug 2003 | A1 |
20050168178 | Toyozawa | Aug 2005 | A1 |
20050168186 | Matsubara | Aug 2005 | A1 |
20050217945 | Kimura | Oct 2005 | A1 |
20050281680 | Schulz | Dec 2005 | A1 |
20060012321 | Rozman et al. | Jan 2006 | A1 |
20060061318 | Aono | Mar 2006 | A1 |
20060090533 | Fujibayashi | May 2006 | A1 |
20060138990 | Ide | Jun 2006 | A1 |
20060145649 | Iura | Jul 2006 | A1 |
20060158143 | Okita | Jul 2006 | A1 |
20070176573 | Iwashita | Aug 2007 | A1 |
20090009126 | Hishikawa | Jan 2009 | A1 |
20090026021 | Kimura | Jan 2009 | A1 |
20090052209 | Kaitani | Feb 2009 | A1 |
20090236160 | Tanaka et al. | Sep 2009 | A1 |
20090284208 | Ikeda | Nov 2009 | A1 |
20100060226 | Ide | Mar 2010 | A1 |
20100148714 | Okita | Jun 2010 | A1 |
20110220629 | Mehn | Sep 2011 | A1 |
20140070752 | Otsuji et al. | Mar 2014 | A1 |
Number | Date | Country |
---|---|---|
1148448 | Apr 1997 | CN |
1240064 | Dec 1999 | CN |
1617553 | Jan 2006 | EP |
07-115791 | May 1995 | JP |
08-022330 | Jan 1996 | JP |
2002-142483 | May 2002 | JP |
2009-227147 | Oct 2009 | JP |
2012-039847 | Feb 2012 | JP |
WO 2008093485 | Aug 2008 | WO |
Entry |
---|
International Search Report for corresponding International Application No. PCT/JP2012/054607, Apr. 10, 2012. |
Written Opinion for corresponding International Application No. PCT/JP2012/054607, Apr. 10, 2012. |
Holtz J et al., “Controlled AC drives with ride-through capability at power interruption”, Industry Applications Society Annual Meeting, Conference Record of the 1993 IEEE, Oct. 2, 1993, pp. 629-636, Toronto, Ont., Canada, New York, NY, USA, XP010118698. |
M.H.J. Bollen., “The influence of motor re-acceleration on voltage sags”, Industry Applications Society Annual Meeting, Conference Record of the 1994 IEEE, Jan. 1, 1994 pp. 2235-2242, Denver, CO, USA, XP055253091. |
Chinese Office Action for corresponding CN Application No. 201280070654.0, Mar. 11, 2016. |
Extended European Search Report for corresponding EP Application No. 12869285.2-1806, Mar. 8, 2016. |
Number | Date | Country | |
---|---|---|---|
20140354208 A1 | Dec 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/JP2012/054607 | Feb 2012 | US |
Child | 14464707 | US |