The present disclosure relates to a motor controlling method, a motor controlling system, and an electronic power steering system.
Recently, an electric driving system has been widely used in various applications. An example of the electric driving system may include a motor controlling system. The motor controlling system controls, for example, an electric motor (hereinafter, referred to as a “motor”) using a vector control. The vector control includes, for example, a method using a current sensor and a position sensor (hereinafter, referred to as a “sensor control”) and a method using only a current sensor (hereinafter, referred to as a “sensorless control”). In the sensor control, a rotor position (hereinafter, referred to as a “rotor angle”) is calculated based on a measured value of the position sensor. On the other hand, in the sensorless control, a rotor angle is estimated based on a current or the like measured by the current sensor.
Generally, torque information is required for the vector control. For example, torque may be calculated based on a torque angle of the motor. In particular, in the sensorless control, it is required to estimate a rotor angle based on a torque angle. As described above, it is important to precisely obtain the torque angle so as to improve precision of the vector control. For example, it is known that the torque angle in the sensor control may be calculated using a variable in a d-q rotating coordinate system. The torque angle is also referred to as a load angle.
A related art discloses a sensorless control for estimating a torque angle using a so-called observer. Specifically, the observer estimates a rotor angle based on a current value measured by a current sensor and also estimates feedbacktorque angle based on the estimated rotor angle. Another related art discloses an operation Equation for obtaining a torque angle based on an estimated value of torque.
There is a case in which a calculation of a torque angle based on variables in a d-q rotational coordinate system used for a sensor control is not applicable to a sensorless control. The reason is as follows. The d-q rotating coordinate system is a rotating coordinate system that rotates together with a rotor and is a coordinate system that is set based on a rotor angle and a rotational speed. On the other hand, in the sensorless control, there is a case in which a torque angle is required for estimating a rotor angle. In this case, in the sensorless control, there is a need for a method of calculating a torque angle which does not depend on variables in the d-q rotating coordinate system.
A sensorless control for estimating a torque angle using an observer disclosed in the related art usually requires various parameters (for example, armature inductance and reactance) with respect to a motor and is strongly influenced by the parameters. For example, in the related art, it is described that the estimation using the observer strongly depends on an initial value and a noise covariance matrix particularly. As a result, when the value and matrix are incorrectly selected, a motor is likely to be unstably controlled. In addition, the estimation by the observer requires a more complicated calculation. Therefore, there is a problem in that a calculation load of a computer is increased. For this reason, there is a need for a method for estimating a torque angle which does not particularly require a complicated calculation in the sensorless control.
A motor controlling method according to an example embodiment of the present disclosure is a motor controlling method of controlling a surface permanent magnet motor, the motor controlling method including a step of obtaining a resultant magnetic flux, a stator current, and a stator voltage, which are represented by a phasor, with respect to an α-β fixed coordinate system or a d-q rotating coordinate system, a step of calculating an angle (ϕ) between the stator current and the stator voltage, a step of calculating a torque angle (δ) according to:
δ=cot−1(ψs/(LIs cos(ϕ))−tan(ϕ)), where L is an armature inductance, ψs indicates a magnitude of the resultant magnetic flux, and Is indicates a magnitude of the stator current, and a step of controlling the permanent magnet motor based on the torque angle (δ).
A motor controlling system according to an example embodiment of the present disclosure includes a surface permanent magnet motor and a control circuit to control the surface permanent motor, wherein the control circuit obtains a resultant magnetic flux, a stator current, and a stator voltage, which are represented by a phasor, with respect to an α-β fixed coordinate system or a d-q rotating coordinate system, calculates an angle (ϕ) between the stator current and the stator voltage, calculates a torque angle (δ) according:
δ=cot−1(ψs/(LIs cos(ϕ))−tan(ϕ)) Equation 2, where L is an armature inductance, ψs indicates a magnitude of the resultant magnetic flux, and Is indicates a magnitude of the stator current, and controls the surface permanent magnet motor based on the torque angle (δ).
The above and other elements, features, steps, characteristics and advantages of the present disclosure will become more apparent from the following detailed description of the example embodiments with reference to the attached drawings.
Hereinafter, example embodiments of motor controlling methods, motor controlling systems, and electronic power steering systems each including a motor controlling system according to an example embodiment of the present disclosure will be described with reference to the accompanying drawings. However, there will be instances in which unnecessarily detailed description is omitted. This is to prevent the following description from being unnecessarily lengthy, in order to facilitate understanding for a person of ordinary skill in the art. For example, detailed descriptions of subject matter that is already well-known, as well as a redundant description of components that are substantially the same will be omitted in some cases.
The motor controlling system 1000 typically includes a motor M, a controller (control circuit) 100, a driving circuit 200, an inverter (also referred to as an “inverter circuit”) 300, a plurality of current sensors 400, an analog-to-digital conversion circuit (hereinafter, referred to as an “AD converter”) 500, and a read only memory (ROM) 600. The motor controlling system 1000 may be modularized. Thus, for example, the motor controlling system 1000 may be manufactured and sold as a motor module including a motor, a sensor, a driver, and a controller. Furthermore, in the present specification, the motor controlling system 1000 will be described by exemplifying a system having the motor M as a component. However, the motor controlling system 1000 may be a system for driving the motor M which does not include the motor M as a component.
The motor M is a surface permanent magnet (SPM) motor, for example, a surface permanent magnet synchronous motor (SPMSM). The motor M includes three-phase coils (U-phase coil, V-phase coil, and W-phase coil) (not shown). The three-phase coils are electrically connected to the inverter 300. Furthermore, the present disclosure is not limited to a three-phase motor, but multiphase motors such as a five-phase motor and a seven-phase motor are also within the scope of the present disclosure. In the present specification, example embodiments of the present disclosure will be described by exemplifying a motor controlling system for controlling a three-phase motor.
The controller 100 is, for example, a microcontroller unit (MCU). Alternatively, the controller 100 may also be implemented, for example, as a field programmable gate array (FPGA) equipped with a central processing unit (CPU) core.
The controller 100 controls the entirety of the motor controlling system 1000 and controls, for example, torque and a rotational speed of the motor M through a vector control. The present disclosure is not limited to the vector control, and the motor M may also be controlled though other closed loop controls. The rotational speed is expressed in revolutions per minute (rpm) at which a rotor rotates for a unit time (for example, for one minute) or revolutions per second (rps) at which the rotor rotates for a unit time (for example, for one second). The vector control is a method of dividing a current flowing in a motor into a current component contributing to the generation of torque and a current component contributing to the generation of a magnetic flux and independently controlling the current components orthogonal to each other. The controller 100 sets, for example, a target current value according to an actual current value measured by the plurality of current sensors 400 and a rotor angle estimated based on the actual current value. The controller 100 generates a pulse width modulation (PWM) signal based on the target current value and outputs the generated PWM signal to the driving circuit 200.
The driving circuit 200 is, for example, a gate driver. The driving circuit 200 generates a control signal for controlling a switching operation of a switching element in the inverter 300 according to the PWM signal output from the controller 100. Furthermore, as will be described below, the driving circuit 200 may be mounted on the controller 100.
For example, the inverter 300 converts direct current (DC) power supplied from a DC power source (not shown) into alternating current (AC) power and drives the motor M with the converted AC power. For example, the inverter 300 converts DC power into three-phase AC power which is a pseudo-sinusoidal wave having a U-phase, a V-phase, and a W-phase based on a control signal output from the driving circuit 200. The motor M is driven by the converted three-phase AC power.
The plurality of current sensors 400 include at least two current sensors configured to detect at least two currents flowing in the U-phase, V-phase, and W-phase coils of the motor M. In the present example embodiment, the plurality of current sensors 400 include two current sensors 400A and 400B (see
The AD converter 500 samples an analog signal output from the plurality of current sensors 400, converts the analog signal into a digital signal, and outputs the converted digital signal to the controller 100. The controller 100 may also perform AD conversion. In this case, the plurality of current sensors 400 directly output an analog signal to the controller 100.
The ROM 600 is, for example, a writable memory (for example, a programmable read only memory (PROM)), a rewritable memory (for example, a flash memory), or a read-only memory. The ROM 600 stores a control program having a command group for controlling the motor M in the controller 100. For example, the control program is first loaded in a random access memory (RAM, not shown) at the time of booting. Also, the ROM 600 need not be mounted outside the controller 100 but may be mounted on the controller 100. The controller 100 equipped with the ROM 600 may be, for example, the above-described MCU.
A hardware configuration of the inverter 300 will be described in detail with reference to
The inverter 300 includes three low side switching elements and three high side switching elements. As shown, switching elements SW_L1, SW_L2, and SW_L3 are the low side switching elements, and switching elements SW_H1, SW_H2, and SW_H3 are the high side switching elements. For example, a semiconductor switching element such as a field effect transistor (FET, typically a metal-oxide semiconductor field-effect transistor (MOSFET)) or an insulated gate bipolar transistor (IGBT) may be used as the switching element. The switching element includes a reflux diode configured to allow a regenerative current flowing toward the motor M to flow therefrom.
For example, the controller 100 may drive the motor M by performing a control through three-phase conduction (hereinafter, referred to as a “three-phase conduction control”) based on a vector control. For example, the controller 100 generates a PWM signal for performing a three-phase conduction control and outputs the PWM signal to the driving circuit 200. The driving circuit 200 generates a gate control signal for controlling a switching operation of each FET of the inverter 300 based on the PWM signal and supplies the generated gate control signal to a gate of each FET.
As shown in the drawing, the motor controlling system 1000 may not include a driving circuit 200. In this case, a controller 100 includes a port capable of directly controlling a switching operation of each FET of an inverter 300. Specifically, the controller 100 may generate a gate control signal based on a PWM signal. The controller 100 may output the gate control signal through the port and supply the gate control signal to a gate of each FET.
As shown in
The motor controlling system 1000 may include, for example, a speed sensor or an acceleration sensor instead of the position sensor 700. When the speed sensor is used as the position sensor, the controller 100 may calculate a rotor angle, i.e., a rotation angle, by performing integral treatment or the like on a rotational speed signal or an angular speed signal. An angular speed is expressed in radians per second (rad/s) at which a rotor rotates for one second. In addition, when the acceleration sensor is used as the position sensor, the controller 100 may calculate a rotation angle by performing integral treatment or the like on an angular acceleration signal.
The motor controlling system of the present disclosure may be used, for example, as a motor controlling system for performing a sensorless control, which does not include a position sensor as shown in
Hereinafter, by exemplifying a motor controlling system for controlling a sensorless control, a specific example of a motor controlling method used in the system will be described with reference to
An outline of a controlling method of a motor controlling system 1000 is as follows.
First, three-phase currents Ia, Ib, and Ic measured by a current sensor 400 are transformed into a current Iα and a current Iβ on an α-axis and a β-axis of an α-β fixed coordinate system. Next, a phase angle ρ is calculated based on the current Iα and the current Iβ. In addition, a stator current Is, a resultant magnetic flux ψs, and an angle ϕ ((hereinafter, referred to as a “phase angle ϕ”) between the stator current Is and the resultant magnetic flux ψs are calculated. After that, a torque angle δ is estimated based on the stator current Is, the resultant magnetic flux ψs, and the phase angle ϕ. In addition, torque T and a rotor angle θ required for controlling a motor are determined based on the torque angle δ. Finally, a motor M is controlled based on the torque T and the rotor angle θ.
An algorithm for implementing the motor controlling method according to the present example embodiment may be implemented, for example, only by hardware such as an application specific integrated circuit (ASIC) or an FPGA or may also be implemented by a combination of hardware and software.
As shown in
When each functional block is implemented in the controller 100 as software, an execution subject of the software may be, for example, a core of the controller 100. As described above, the controller 100 may be implemented as an FPGA. In this case, all or some of the functional blocks may be implemented in hardware.
Processing may be distributed using a plurality of FPGAs, and thus, it is possible to distribute a calculation load of a specific computer. In this case, all or some of the functional blocks shown in
For example, in a three-phase conduction control, the sum of currents flowing in respective phases ideally becomes zero. In the present specification, a current flowing in a U-phase coil of a motor M is denoted by Ia, a current flowing in a V-phase coil of the motor M is denoted by Ib, and a current flowing in a W-phase coil of the motor M is denoted by Ic. The sum of the currents Ia, Ib, and Ic is zero.
The controller 100 (for example, a CPU core) receives two currents among the currents Ia, Ib, and Ic and obtains the remaining one current through a calculation. In the present example embodiment, the controller 100 obtains the current Ia measured by a current sensor 400A and the current Ib measured by a current sensor 400B. The controller 100 calculates the current Ic based on the currents Ia and Ib using such a relationship in which the sum of the currents Ia, Ib, and Ic is zero. The currents Ia, Ib, and Ic may also be measured using three current sensors and may be input to the controller 100 through an AD converter 500.
The controller 100 may transform the current Ia, the current Ib, and the current Ic into a current Iα on an α-axis and a current Iβ on a β-axis of an α-β fixed coordinate system using a so-called Clarke transform used for a vector control and the like. Here, the α-β fixed coordinate system is a stationary coordinate system. Among three phases, a direction of one phase (for example, the direction of a U-phase) corresponds to the α-axis, and a direction orthogonal to the α-axis corresponds to the β-axis.
In addition, the controller 100 transforms reference voltages Va*, Vb*, and Vc* into a reference voltage Vα* on the α-axis and a reference voltage Vβ* on the β-axis of the α-β fixed coordinate system using the Clark transformation. The reference voltages Va*, Vb*, and Vc* indicate the above-described PWM signal for controlling each switching element of an inverter 300.
For example, calculations for obtaining Iα and Iβ and the reference voltages Vα* and Vβ* may also be performed by the motor control unit 160 of the controller 100. The currents Iα and Iβ and the reference voltages Vα* and Vβ* are input to the pre-calculation unit 110 and the phase angle calculation unit 130.
In a motor control according to the present example embodiment, the stator current Is, the resultant magnetic flux ψs, and the phase angle ϕ are given as variables, and armature resistance R (mΩ), armature inductance L (μH), and a rotor magnetic flux ψm (Wb) are given as parameters. Here, the rotor magnetic flux ψm indicates a magnitude of a magnetic flux of a permanent magnet of a rotor.
The pre-calculation unit 110 obtains the variables Is, Vs, ψs, and ϕ based on the currents Iα and Iβ and the reference voltages Vα* and Vβ* with respect to the α-β fixed coordinate system or d-q rotating coordinate system. Since the pre-calculation unit 110 delivers the variables to the torque angle calculation unit 120 in rear thereof, the pre-calculation unit 110 is a unit configured to perform a pre-calculation.
The pre-calculation unit 110 calculates a stator current Is in a phasor diagram according to Equation 1.
I
s=(Iα2+Iβ2)1/2 Equation 1
The pre-calculation unit 110 calculates a resultant magnetic flux ψs in a phasor diagram based on the currents Iα and Iβ and reference voltages Vα* and Vβ*. Specifically, the pre-calculation unit 110 calculates the resultant magnetic flux ψs according to Equations 2 to 4. As shown in
For example, the pre-calculation unit 110 calculates a component ψα on an α-axis of the resultant magnetic flux ψs according to Equation 2. The pre-calculation unit 110 calculates a component ψβ on a β-axis of the resultant magnetic flux ψs according to Equation 3. Here, LPF in Equations 2 and 3 means processing by a low pass filter. For the purpose of removing harmonics, for example, a general low pass filter of the controller 100 may be used. The resultant magnetic flux ψs is represented by Equation 4.
ψα=LPF(Vα*−R·Iα) Equation 2
ψβ=LPF(Vβ*−R·Iβ) Equation 3
ψs=(ψα2+ψβ2)1/2 Equation 4
The pre-calculation unit 110 calculates a back electromotive force component BEMFα on an α-axis and a back electromotive force component BEMFβ on a β-axis based on the currents Iα and Iβ and the reference voltages reference voltages Vα* and Vβ*. Specifically, the pre-calculation unit 110 calculates the back electromotive force component BEMFα and the back electromotive force component BEMFβ according to Equations 5 and 6.
BEMFα=Vα*−R·Iα Equation 5
BEMFβ=Vβ*−R·Iβ Equation 6
The pre-calculation unit 110 calculates a stator voltage Vs in a phasor diagram according to Equation 7. The stator voltage Vs is a voltage corresponding to a back electromotive force voltage. As described above, the back electromotive force voltage is referred to as the stator voltage in the present specification.
V
s=(BEMFα2+BEMFβ2)1/2 Equation 7
As shown in
The pre-calculation unit 110 calculates the phase angle ϕ according to Equation 8. Here, “arg” is an operator indicating an argument of a phasor. The phase angle ϕ indicates an argument difference between two phasors.
ϕ=arg(Vs)−arg(Is) Equation 8
The pre-calculation unit 110 outputs the variables Is, ψs, and ϕ to the torque angle calculation unit 120. In addition, other hardware (for example, an FPGA) different from the controller 100 may calculate the variables Is, ψs, and ϕ. The torque angle calculation unit 120 may receive and obtain the variables Is, ψs, and ϕ from other hardware. According to such a configuration, the calculation load of the controller 100 may be reduced.
The torque angle calculation unit 120 may receive a torque angle δ based on the parameters L and the variables Is, ψs, and ϕ. In
As shown, Equation 9 is obtained by applying a so-called sine law to a triangle having three sides of ψm, ψa, and ψs. Equation 9 may be transformed into Equations 10 from a relation of sin(90−θ)=cos θ.
ψa/sin(δ)=ψs/sin[90−(δ−ϕ)]=ψm/sin(90−ϕ) Equation 9
ψa/sin(δ)=ψs/cos(δ−ϕ)=ψm/cos(ϕ) Equation 10
The inverses of first and second functions from a left side of Equation 10 are taken to obtain Equation 11. When cos(δ−ϕ) of Equation 11 is developed using a general addition theorem of trigonometric functions, Equation 12 is obtained. A transformation is further performed to obtain Equation 13. The addition theorem is “cos(α−β)=cos α cos β+sin α sin β”.
sin(δ)/ψa=cos(δ−ϕ)/ψs Equation 11
sin(δ)/ψa=(cos(δ)cos(ϕ)+sin(δ)sin(ϕ))/ψs Equation 12
cot(δ)=ψs/(ψa cos(δ−ϕ))−tan(ϕ) Equation 13
ψa=L·Is is substituted into Equation 13 and an inverse trigonometric function of cot(δ) is calculated to finally obtain Equation 14 with respect to δ.
Equation
δ=cot−1(ψs/(ψa cos(δ−ϕ))−tan(ϕ)) Equation 14
The torque angle calculation unit 120 outputs the torque angle δ to the torque calculation unit 150 and the rotor angle calculation unit 140. As shown in Equation 14, the variables in the d-q rotating coordinate system and the rotor magnetic flux ψm are not required for estimating the torque angle δ. According to the present example embodiment, the torque angle δ may be calculated based on the parameter L and the variables Is, ψs and ϕ.
A phase angle calculation unit 130 estimates a phase angle ρ based on the currents Iα, and Iβ and the reference voltages Vα* and Vβ*. As in the pre-calculation unit, the phase angle calculation unit 130 calculates, for example, magnetic flux components ψα and ψβ according to Equations 2 and 3. In addition, the phase angle calculation unit 130 calculates, for example, the phase angle ρ according to Equation 15. For example, as shown in
ρ=tan−1(ψβ/ψα) Equation 15
The rotor angle calculation unit 140 calculates a rotor angle θ based on the torque angle δ and the phase angle ρ. A relationship between the torque angle δ, the phase angle ρ, and the rotor angle θ is as shown in
θ=ρ−δ Equation 16
The torque calculation unit 150 calculates torque T based on the torque angle δ. When an SPM motor is used, a saliency ratio (Ld/Lq) becomes 1 (that is, L=Ld=Lq). In this case, it is known that the torque T as a reaction of torque acting on an armature is represented by Equation 17. For example, the torque calculation unit 150 may calculate the torque T based on Equation 17.
T=3/2·P·(ψm·ψs/L)sin(δ) Equation 17,
wherein P is a parameter indicating the number of motor pole pairs.
The motor control unit 160 may control the motor M based on the torque T and the rotor angle θ. For example, the motor control unit 160 performs a calculation required for a general vector control. Furthermore, since the vector control is well-known technology, detailed descriptions of the control will be omitted.
According to the present example embodiment, in the sensorless control, a torque angle may be obtained without depending on variables in the d-q rotating coordinate system. In addition, since a complicated calculation is not particularly required for estimating the torque angle, it is possible to reduce load of a computer and reduce memory costs.
The validity of the calculation of the torque angle δ according to the present disclosure was verified using a “rapid control prototyping (RCP) system” of dSPACE Company and Matlab/Simulink of MathWorks Company. Verification results are shown below. A model of an SPM motor controlled by a vector control was used for the verification. Values of various system parameters at the time of verification are shown in Table 1.
It can be seen from a simulation result of
From the simulation results, it can be seen that a torque angle is precisely estimated in the sensorless control by using a method of calculating a torque angle proposed in the present specification.
The present disclosure is not limited to the sensorless control as described above, but the method of estimating the torque angle δ according to the present disclosure may also be suitably used for the motor controlling system for controlling a sensor shown in
The controller 100 of the motor controlling system 1000 shown in
δ=tan−1[(Vd−R·Id)/(Vq−R·Iq)] Equation 18
Here, Vd is a voltage component of an armature voltage on a d-axis, and Vq is a voltage component of the armature voltage on a q-axis. Id is a current component of an armature current on the d-axis, and Iq is a current component of the armature current on the q-axis.
In a sensor control, when a position sensor is broken due to any cause, a rotor angle may not be measured. Therefore, it is difficult to continue the sensor control. On the other hand, when the position sensor fails, it is possible to switch a motor control from the sensor control to the sensorless control. Even when the position sensor fails, the motor control may be continued by applying the method of estimating the torque angle according to the present disclosure to the sensorless control.
A vehicle, such as a car, generally includes an EPS system. The EPS system 2000 according to the present example embodiment includes a steering system 520 and an auxiliary torque mechanism 540 configured to generate an auxiliary torque. The EPS system 2000 generates an auxiliary torque that assists in a steering torque of the steering system generated by a driver operating a steering wheel. Operation load of the driver is reduced by the auxiliary torque.
For example, the steering system 520 includes a steering wheel 521, a steering shaft 522, universal shaft joints 523A and 523B, a rotation shaft 524, a rack and pinion mechanism 525, a rack shaft 526, left and right ball joints 552A and 552B, tie rods 527A and 527B, knuckles 528A and 528B, and left and right steering wheels 529A and 529B.
For example, the auxiliary torque mechanism 540 includes a steering torque sensor 541, an electronic control unit (ECU) 542 for a vehicle, a motor 543, and a deceleration mechanism 544. The steering torque sensor 541 detects steering torque in the steering system 520. The ECU 542 generates a drive signal based on a detection signal of the steering torque sensor 541. The motor 543 generates an auxiliary torque according to steering torque based on the drive signal. The motor 543 transfers the generated assist torque to the steering system 520 through the deceleration mechanism 544.
For example, the ECU 542 includes the controller 100 and the driving circuit 200 according to Example embodiment 1. In a car, an electronic control system is built based on the ECU. In the EPS system 2000, for example, a motor controlling system is built by the ECU 542, the motor 543, and the inverter 545. The motor controlling system 1000 according to Example embodiment 1 may be suitably used as the motor controlling system.
The example embodiments of the present disclosure are suitably used in an X-by-wire system such as a shift-by-wire system, a steer-by-wire system, or a brake-by-wire system, and a motor controlling system of a traction motor or the like, in which an ability to estimate a torque is required. For example, the motor controlling system according to the example embodiments of the present disclosure may be mounted on an autonomous vehicle corresponding to Levels 0 to 4 (standard of automation) defined by the Japanese government and the National Highway and Traffic Safety Administration (NHTSA) of the U.S. Department of Transportation.
According to exemplary example embodiments of the present disclosure, provided are a novel motor controlling method capable of estimating a torque angle without depending on variables in a d-q rotating coordinate system in a sensorless control, a motor controlling system, and an electronic power steering system including the motor controlling system.
The example embodiments of the present disclosure may be widely used in various apparatuses including various motors such as a vacuum cleaner, a dryer, a ceiling fan, a washing machine, a refrigerator, and an electronic power steering system.
Features of the above-described preferred example embodiments and the modifications thereof may be combined appropriately as long as no conflict arises.
While example embodiments of the present disclosure have been described above, it is to be understood that variations and modifications will be apparent to those skilled in the art without departing from the scope and spirit of the present disclosure. The scope of the present disclosure, therefore, is to be determined solely by the following claims.
Number | Date | Country | Kind |
---|---|---|---|
2017-040910 | Mar 2017 | JP | national |
This is a U.S. national stage of PCT Application No. PCT/JP2018/000250, filed on Jan. 10, 2018, and priority under 35 U.S.C. § 119(a) and 35 U.S.C. § 365(b) is claimed from Japanese Application No. 2017-040910, filed Mar. 3, 2017; the entire disclosures of each application are incorporated herein by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2018/000250 | 1/10/2018 | WO | 00 |