The field of the disclosure relates generally to vacuum cleaners and, more particularly, to vacuum cleaner motor covers including vent openings.
Some vacuum appliances, in particular wet/dry vacuum cleaners, include lid-mounted motors that facilitate the movement of air using a motor and an impeller connected to the motor. Some vacuum cleaners also include vent openings or other ventilation means, for example, to provide cooling air to a motor of the vacuum cleaner. Such vent openings may provide a point of ingress for water and other liquids into a motor chamber of the vacuum cleaner, which may adversely affect operation of the vacuum cleaner.
This section is intended to introduce the reader to various aspects of art that may be related to various aspects of the disclosure, which are described and/or claimed below. This discussion is believed to be helpful in providing the reader with background information to facilitate a better understanding of the various aspects of the present disclosure. Accordingly, it should be understood that these statements are to be read in this light, and not as admissions of prior art.
In one aspect, a motor cover for a vacuum cleaner defines a motor cavity for enclosing a motor of the vacuum cleaner. The motor cover includes an exhaust located at a rear of the motor cover. The motor cover defines a front located opposite from the rear, and further defines a central longitudinal axis extending from the front of the motor cover to the rear of the motor cover. The motor cover further includes a lattice structure defining a plurality of vent openings that provide ventilation of the motor cover. Each vent opening of the plurality of vent openings is defined by a first cross member, a second cross member, a first side member, and a second side member of the lattice structure. The second cross member is spaced vertically below the first cross member and the first side member is spaced horizontally forward from the second side member. Each of the first and second side members extends from the first cross member to the second cross member. The second cross member extends further outward from a central vertical axis of the motor cover than the first cross member, and the first side member extends further outward from the central longitudinal axis than the second side member.
In another aspect, a vacuum cleaner includes a canister defining a debris chamber, a lid mounted to a top of the canister and enclosing the debris chamber, a motor cover connected to the lid and defining a motor cavity, a motor connectable to a power source and enclosed within the motor cavity, and an impeller connected to the motor and operable to generate air flow through the debris chamber upon operation of the motor. The motor cover includes a lattice structure defining a plurality of vent openings that provide ventilation of the motor cover. Each vent opening of the plurality of vent openings is shaped and oriented to prevent water ingress into the motor cavity.
In yet another aspect, a power head for a vacuum cleaner includes a motor cover defining a motor cavity, a motor connectable to a power source and enclosed within the motor cavity, and an impeller connected to the motor and operable to generate air flow upon operation of the motor. The motor cover includes a lattice structure defining a plurality of vent openings that provide ventilation of the motor cover. Each vent opening of the plurality of vent openings is shaped and oriented to prevent water ingress into the motor cavity.
Various refinements exist of the features noted in relation to the above-mentioned aspects of the present disclosure. Further features may also be incorporated in the above-mentioned aspects of the present disclosure as well. These refinements and additional features may exist individually or in any combination. For instance, various features discussed below in relation to any of the illustrated embodiments of the present disclosure may be incorporated into any of the above-described aspects of the present disclosure, alone or in any combination.
Corresponding reference characters indicate corresponding parts throughout the drawings.
With reference to the drawings, and in particular
The powerhead 104 includes a lid portion 112 (generally, a lid) and a motor cover 114 connected to the lid 112 and defining a motor cavity 200 for enclosing a motor 202 of the vacuum cleaner 100. The motor cover 114 defines a front 206 located opposite from a rear 208. The motor cover 114 further defines a central longitudinal axis 600 (shown in
The lid 112 encloses the debris chamber 108, and is removably attached to the canister 102 so that the lid 112 can be readily removed to empty debris or liquids contained within the canister 102. In the illustrated embodiment, the lid 112 is formed integrally as one piece of material with the motor cover 114, for example, by a suitable injection molding technique. In other embodiments, the lid 112 may be formed separately from the motor cover 114 and configured to receive the motor cover 114. In such embodiments, the motor cover 114 may be removably connected to the lid 112.
The powerhead 104 also includes a fan or impeller 204 connected to the motor 202. The motor 202 is connectable to a power source, for example by means of a power cord (not shown). The impeller 204 is operable to generate airflow through the debris chamber 108 from the inlet 110 to an exhaust 210 upon operation of the motor 202 so as to draw solid debris, liquids, or both into the debris chamber 108 defined by the canister 102. In the example embodiment, the inlet 110 is defined by the canister 102, and the exhaust 210 is defined by the motor cover 114, specifically at the rear 208 of the motor cover 114. In other embodiments, the inlet 110 and the exhaust 210 may be defined by any suitable portion of the vacuum cleaner 100 that enables the vacuum cleaner 100 to function as described herein. In some embodiments, for example, the inlet 110 may be defined by the lid 112.
In the illustrated embodiment, the vacuum cleaner 100 further includes a filter assembly 212 connected to, and depending downward from, the powerhead 104 and into the debris chamber 108 to filter debris. In operation, when the motor 202 is energized, air flows into the canister 102 through the vacuum inlet 110, through the filter assembly 212, and into the powerhead 104 before being exhausted back into an environment surrounding the vacuum cleaner 100 through the exhaust 210.
In the illustrated embodiment, the motor cover 114 includes a plurality of lattice structures 116 that each defines a plurality of vent openings 302 (shown in
The motor cover 114 includes two lattice structures 116 arranged on substantially opposite sides of the motor cover 114. That is, the motor cover 114 includes a first lattice structure 116 defining a first plurality of vent openings 302 on a first side of the motor cover 114, and a second lattice structure defining a second plurality of vent openings located on a second side of the motor cover 114 opposite the first side. In other embodiments, the motor cover 114 may include any suitable number of lattice structures 116 arranged at any suitable locations that enables the vacuum cleaner 100 to function as described herein.
With additional reference to
The relative positioning and orientation of the first cross-member 304 and second cross-member 306 of each vent opening 302 facilitates preventing water or liquid ingress into the motor cavity 200. For example, the first cross-member 304 and second cross-member 306 of each vent opening 302 cause water or liquid to be shed outwardly and away from the interior of the motor cover 114 as the water or liquid flows from a top of the motor cover 114 to a bottom of the motor cover 114. The lattice structure 116 and vent openings 302 thereby facilitate preventing water or liquid ingress into the motor cavity 200, and protecting water or liquid sensitive components housed within the motor cavity when the vacuum cleaner is exposed to, for example, a wet environment.
Similarly, the relative positioning and orientation of the first side member 308 and second side member 310 of each vent opening 302 facilitates preventing water or liquid ingress into the motor cavity 200 when the vacuum cleaner 100 is oriented such that the exhaust 210 is oriented upward. For example, the first side member 308 and second side member 310 of each vent opening 302 are positioned and oriented to cause water or liquid to be shed outwardly and away from the interior of the motor cover 114 as the water or liquid flows from the rear 208 of the motor cover 114 toward the front 206 of the motor cover 114. In this way, the first side member 308 and second side member 310 of each vent opening 302 facilitate preventing water or liquid discharged from the exhaust 210 (e.g., when the vacuum cleaner 100 is tipped forward) from entering the motor cavity 200.
The lattice structure 116 and vent openings 302 therefore facilitate operation of the vacuum cleaner 100 in wet conditions that may otherwise cause water or liquid sensitive components housed within the motor cover 114 to be compromised due to water or liquid ingress.
The lattice structure 116 shown is a hexagonal lattice structure such that each vent opening 302 is shaped hexagonally. In other embodiments, the vent openings 302 may be substantially triangular, rectangular, pentagonal, octagonal, circular, oval-shaped, or any shape that enables the vacuum cleaner 100 to function as described herein. Further, in the illustrated embodiment, each of the first 308 and second side members 310 is V-shaped. In other embodiments, the first 308 and second side members 310 may be U-shaped, L-shaped, or any shape that enables the vacuum cleaner 100 to function as described herein.
The plurality of vent openings 302 are arranged in a plurality of columns 312 (
Stated another way, the second cross member 306 includes an overlapping segment 506 that vertically overlaps the first cross member 304, and a non-overlapping segment 508 that extends outward from the motor cavity 200 and beyond the first cross member 304. Each of the overlapping segment 506 and the non-overlapping segment 508 has a respective length. In the illustrated embodiment, a ratio of the length of the overlapping segment 506 to the length of the non-overlapping 508 segment is approximately 3:1. In other embodiments, the ratio of the length of the overlapping segment 506 to the length of the non-overlapping 508 segment is at least 2:1. In other embodiments, the ratio of the length of the overlapping segment 506 to the length of the non-overlapping 508 segment is any ratio that enables the vacuum cleaner 100 to function as described herein.
The first cross member 304 and second cross member 306 slope downward at an oblique angle θs relative to a horizontal plane 510 oriented perpendicular to the central vertical axis 400 of the motor cover 114. The first cross member 304 and second cross member 306 can be oriented at any suitable angle θs that enables the vacuum cleaner 100 to function as described herein. In the illustrated embodiment, θs is approximately 15°. In other embodiments, θs can be between 0° and 45°, between 5° and 45°, between 10° and 45°, between 10° and 40°, between 10° and 35°, between 20° and 45°, between 10° and 30°, between 15° and 35°, and between 20° and 40°.
The overlapping segments 506 and the non-overlapping 508 segments of the first 304 and second cross members 306, in combination with the downward slope of the first cross member 304 and the second cross member 306, facilitates preventing ingress of liquids, for example water, through the vent openings 302 and into the motor cavity 200. For example, a liquid, indicated by arrows 512 in
The first side member 308 and the second side member 310 thereby facilitate shedding water and other liquids outward and away from the motor cavity 200 in a manner similar to the first cross member 304 and the second cross member 306, for example, when the vacuum cleaner 100 is tipped forward and the exhaust 210 is oriented upward. Specifically, as shown in
Embodiments of vacuum cleaner motor covers described herein provide improved performance as compared to previous vacuum cleaners. For example, embodiments of the motor covers facilitate shedding water outward and away from a motor cavity of the vacuum cleaner in which electrical components of the vacuum cleaner, such as a motor, are housed. The motor covers thereby facilitate operation of the vacuum cleaners in wet or rainy conditions that may otherwise cause water or liquid sensitive components housed within the motor cover, such as the motor, to be compromised due to water or liquid ingress.
Example embodiments of vacuum cleaning systems are described above in detail. The vacuum cleaning systems are not limited to the specific embodiments described herein, but rather, components of the vacuum cleaning systems may be used independently and separately from other components described herein. For example, the motor covers and lattice structures described herein may be used with a variety of vacuum cleaning systems, including and without limitation, vehicular vacuum cleaning systems, wet/dry vacuum cleaners, canister vacuum cleaners, upright vacuum cleaners, and backpack vacuum cleaners. Additionally, embodiments of the motor covers and lattice structures described herein may be particularly suitable for use in vacuum systems that might otherwise be compromised due to exposure to rain or wet environments.
As used herein, the terms “about,” “substantially,” “essentially” and “approximately” when used in conjunction with ranges of dimensions, concentrations, temperatures or other physical or chemical properties or characteristics is meant to cover variations that may exist in the upper and/or lower limits of the ranges of the properties or characteristics, including, for example, variations resulting from rounding, measurement methodology or other statistical variation.
When introducing elements of the present disclosure or the embodiment(s) thereof, the articles “a”, “an”, “the” and “said” are intended to mean that there are one or more of the elements. The terms “comprising,” “including,” “containing” and “having” are intended to be inclusive and mean that there may be additional elements other than the listed elements. The use of terms indicating a particular orientation (e.g., “top”, “bottom”, “side”, etc.) is for convenience of description and does not require any particular orientation of the item described.
As various changes could be made in the above constructions and methods without departing from the scope of the disclosure, it is intended that all matter contained in the above description and shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense.
This application is a continuation-in-part application of U.S. patent application Ser. No. 29/645,957, filed Apr. 30, 2018, which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3165774 | Barba | Jan 1965 | A |
3240000 | Hayes et al. | Mar 1966 | A |
4542557 | Levine | Sep 1985 | A |
5143655 | Chiu | Sep 1992 | A |
5950753 | Muldoon et al. | Sep 1999 | A |
6099371 | Nozawa et al. | Aug 2000 | A |
6158083 | Holsten | Dec 2000 | A |
D438353 | Hoshino | Feb 2001 | S |
6286472 | Takahashi et al. | Sep 2001 | B1 |
6457206 | Judson | Oct 2002 | B1 |
6524085 | Shoda et al. | Feb 2003 | B2 |
D506042 | Griffin | Jun 2005 | S |
D506857 | Griffin | Jun 2005 | S |
D512545 | Griffin | Dec 2005 | S |
D521700 | Griffin | May 2006 | S |
7067946 | Noda et al. | Jun 2006 | B2 |
7198656 | Takemoto et al. | Apr 2007 | B2 |
7370389 | Tsen | May 2008 | B2 |
7374408 | Savage et al. | May 2008 | B2 |
7524224 | Ide et al. | Apr 2009 | B2 |
D614369 | Theising | Apr 2010 | S |
D618870 | Williams | Jun 2010 | S |
7877836 | O'Neal | Feb 2011 | B2 |
8020251 | Luebbering et al. | Sep 2011 | B2 |
8336517 | Konakawa et al. | Dec 2012 | B2 |
D676205 | Theising | Feb 2013 | S |
8365347 | Morgan et al. | Feb 2013 | B2 |
8454401 | Sakata et al. | Jun 2013 | B2 |
8997308 | Cortes Ruiz et al. | Apr 2015 | B2 |
9027198 | Conrad | May 2015 | B2 |
9062721 | Akahane et al. | Jun 2015 | B2 |
9506667 | Lee | Nov 2016 | B2 |
9693666 | Conrad | Jul 2017 | B2 |
20170191677 | Jeong | Jul 2017 | A1 |
Number | Date | Country |
---|---|---|
202014009238 | Jan 2015 | DE |
10328094 | Dec 1998 | JP |
2014020708 | Feb 2014 | JP |
2017026309 | Feb 2017 | JP |
Entry |
---|
DE-202014009238-U1—English machine translation (Year: 2015). |
Number | Date | Country | |
---|---|---|---|
20190328191 A1 | Oct 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 29645957 | Apr 2018 | US |
Child | 16294487 | US |