This application is a National Stage of International Application No. PCT/JP2012/058623 filed Mar. 30, 2012, the contents of all of which are incorporated herein by reference in their entirety.
The present invention relates to a drive device of a polyphase motor that includes a coil, and more particularly to a motor drive device having a function of estimating a motor coil temperature.
In a motor and a motor drive device, a drive torque is generated by flowing a current through a motor coil. When a large current continuously flows through the motor coil, the motor coil generates heat, which may reach a high temperature, such as equal to or higher than 180° C., and cause a fault, such as breakage of the motor coil or demagnetization of a motor magnet. Therefore, the motor coil needs to be protected by, for example, measuring its temperature to limit the current flowing through the motor coil. However, because it is physically difficult to provide a temperature sensor directly on the motor coil, it is necessary to estimate the temperature of the motor coil by some other possible methods.
In a conventional motor-coil temperature estimation method for a motor drive device, for example, as described in Patent Literature 1, the temperature detected by a temperature sensor provided in the periphery of a motor, and a low-pass filtered value of an integral of a value obtained by multiplying a square value of a motor current by a gain are added together to estimate the temperature of the motor coil.
Patent Literature 1: Japanese Patent Application Laid-open No. 2005-204358
However, in the conventional motor-coil temperature estimation method mentioned above, a heat transfer lag from the motor coil to the temperature sensor provided in the periphery of the motor is not considered. Therefore, there is a problem in that during a period immediately after the motor is activated until the temperature in a motor peripheral portion, where the temperature sensor is provided, increases and reaches a steady state, a temperature estimation error that is the difference between a motor-coil temperature estimation value and an actual value becomes large, and accordingly the motor coil cannot be sufficiently protected.
Further, in the motor-coil temperature estimation method mentioned above, a fixed value is used as the gain by which the square value of the motor current is multiplied. However, the heat resistance of the motor varies depending on the structure of a device such as a flange to which the motor is attached. Therefore, there is a problem in that a motor-coil temperature estimation error may become large depending on the device.
The present invention has been achieved to solve the above problems, and an object of the present invention is to provide a motor drive device using a motor-coil temperature estimation method with a small error for enabling effective motor coil protection even in a state where the temperature of a motor peripheral portion, where a temperature sensor is provided, is low immediately after the motor is activated.
Further, an object of the present invention is to provide a motor drive device using a motor-coil temperature estimation method with a small error for enabling effective motor coil protection by simply identifying a constant to be used for estimating the motor coil temperature, even when a device to which the motor is attached changes.
In order to solve the above problems and achieve the object, the present invention relates to a motor drive device including: a motor drive unit that generates a current for driving a motor on a basis of a position command and a position detection value of the motor; a motor-coil ambient-temperature estimation unit that calculates a motor-coil ambient-temperature estimation value by correcting an output value of a temperature sensor provided in a peripheral portion of a motor coil of the motor by using a filter including both a phase-lead characteristic and a low-pass characteristic; a motor-coil increased-temperature estimation unit that calculates a motor-coil increased-temperature estimation value on a basis of the current; and a motor-coil protection unit that limits the current on a basis of the motor-coil ambient-temperature estimation value and the motor-coil increased-temperature estimation value.
The motor drive device according to the present invention has an effect where a motor coil ambient temperature can be estimated more accurately by correcting a heat transfer lag even in a state where there is a large difference between an actual temperature of a motor coil and a temperature of a motor peripheral portion, where a temperature sensor is provided, at the time of activating the motor, for example. Further, the motor drive device according to the present invention has an effect where a motor coil temperature can be estimated more accurately by adding a motor-coil increased-temperature estimation value estimated from a motor current.
Exemplary embodiments of a motor drive device according to the present invention will be explained below in detail with reference to the drawings. The present invention is not limited to the embodiments.
A motor-coil temperature estimation method for a motor drive device 1 according to a first embodiment of the present invention is explained below.
In the motor drive device 1, the position control unit 2 calculates a speed command on the basis of an input position command and a position detection value from the position sensor 103 provided in the motor 101. The speed control unit 3 then calculates a current command on the basis of the speed command and a speed detection value calculated on the basis of the position detection value. Next, the current control unit 4 controls the current on the basis of the current command and a current detection value detected by a current sensor (not shown), and drives the motor 101 by using this current.
An explanation will be given of motor-coil temperature estimation that is performed by the motor-coil temperature estimation unit 5 included in the motor drive device 1 and in which the heat transfer lag is taken into account.
An increased temperature ΔT of the motor coil 102 is a value obtained by dividing the integral of the difference between an amount of heat generation h per unit time and an amount of heat discharge c per unit time by a heat capacity C, as shown by the following equation (1).
In the case of the motor 101, the amount of heat generation h per unit time is proportional to the square of the current, and the amount of heat discharge c per unit time is proportional to the difference between the temperature near the motor coil 102 and the ambient temperature (outside air temperature). Further, the heat capacity C includes not only the heat capacity of the motor itself but also a heat capacity of a device-side structural member such as a flange to which the motor 101 is attached. Therefore, the value of the heat capacity C varies according to the device. Thus, it is very difficult to accurately identify the parameters for the temperature increase model of the motor coil 102 shown by the above equation (1), and a significant amount of computation is required for obtaining the temperature increase. Consequently, a motor-coil increased temperature ΔT is approximated by a first-order lag shown by the following equation (2).
In the equation, R represents a gain obtained by approximating the constants included in the heat capacity C and the amount of heat generation h as a single value, T1 represents a time constant of a first-order lag filter, s represents a Laplace operator, and i represents a current that flows through the motor coil 102. With this equation, an increase in the motor coil temperature is estimated by feedforward, and the motor coil temperature can be estimated with a smaller response lag. In the above equation (2), the sum of the squares of the current is approximated by the first-order lag filter. However, as another computation method, by processing the square value of the current by using a moving average filter, the same effects can also be obtained.
Next, estimation of the motor-coil ambient temperature is explained. As shown in
In the equation, TEav represents a motor-coil ambient-temperature estimation value, T2 represents a first-order lead compensation time constant, T3 represents a second-order low-pass-filter time constant, s represents a Laplace operator, and TE represents a temperature-sensor detection value. In the above equation (3), a second-order low pass filter is used to perform a smoothing process for removing the influence of noise and the like. However, by using other low pass filters such as a moving average filter, the same effects can also be obtained. Further, by using a second or higher-order filter for phase-lead compensation in the numerator, the same effects can also be obtained.
In the motor-coil temperature estimation unit 5 included in the motor drive device 1, a motor-coil increased-temperature estimation value ΔT calculated by using the above equation (2) by a motor-coil increased-temperature estimation unit 6, and a motor-coil ambient-temperature estimation value TEav calculated by using the above equation (3) by a motor-coil ambient-temperature estimation unit 7, are added together by an adder 8 as expressed by the following equation (4) to calculate and output a motor-coil temperature estimation value TM. The calculated motor-coil temperature estimation value TM is transmitted to the motor-coil protection unit 9. Based on the motor-coil temperature estimation value TM, the motor-coil protection unit 9 controls a current that flows through the motor coil 102 by, for example, limiting a current that flows from the current control unit 4.
A current i, an estimated amount of heat generation in the motor coil ΔT, the temperature-sensor detection value TE, and the motor-coil temperature estimation value TM, which are represented in the above equation (4), are explained below respectively with reference to
As described above, according to the first embodiment of the present invention, the output value of the temperature sensor provided in the motor peripheral portion is corrected by using a filter including both first-order lead characteristics and low-pass characteristics, and is output as a motor ambient-temperature estimation value. Therefore, even in a state where there is a large difference between the actual temperature of the motor coil 102 and the temperature of the motor peripheral portion where the temperature sensor 104 is provided, at the time of activating the motor, for example, the heat transfer lag is corrected, and the motor coil ambient temperature can be estimated more accurately. Further, by adding the motor-coil increased-temperature estimation value estimated from the motor current, the motor coil temperature can be estimated more accurately. Furthermore, in a case where a second-order filter configured by combining the first-order lead filter and the second-order low pass filter is used as a filter to be used by the motor-coil ambient-temperature estimation unit 7, the motor coil temperature can be estimated with high accuracy with a reduced influence of noise, while the heat transfer lag from the motor coil 102 to the motor peripheral portion is corrected by a small amount of calculation.
The motor-coil temperature estimation unit 15 includes a motor-coil increased-temperature estimation unit 16, a motor-coil ambient-temperature estimation unit 17, and an adder 18. The motor-coil increased-temperature estimation unit 16 is the same as the motor-coil increased-temperature estimation unit 6 in the first embodiment. The motor-coil ambient-temperature estimation unit 17 includes a temperature comparison unit 19 that compares the present value (the latest value) and the previous value (a value immediately before the latest value) of a temperature-sensor detection value, a previous-temperature storage unit 20, a first-order lead compensation unit 21, and a smoothing processing unit 22.
In the motor-coil ambient-temperature estimation unit 17 according to the second embodiment, the previous value of the temperature-sensor detection value is stored in the previous-temperature storage unit 20, and the previous value and the present value of the temperature-sensor detection value are compared by the temperature comparison unit 19. When the difference between the previous value and the present value of the temperature-sensor detection value is equal to or larger than a predetermined value, a time constant T2 in the first-order lead compensation unit 21 is validated. When the difference between the previous value and the present value of the temperature-sensor detection value is smaller than the predetermined value, the time constant T2 in the first-order lead compensation unit 21 is made zero. The temperature-sensor detection value that has been processed by the first-order lead compensation unit 21 including the time when the time constant T2 is invalid is smoothed as the motor-coil ambient-temperature estimation value TEav by the smoothing processing unit 22. Thereafter, the motor-coil ambient-temperature estimation value TEav and the motor-coil increased-temperature estimation value ΔT estimated by the motor-coil increased-temperature estimation unit 16 are added together by the adder 18 to be output as the motor-coil estimation temperature TM.
As described above, according to the second embodiment of the present invention, the motor-coil ambient-temperature estimation unit 17 uses a filter that has the phase-lead characteristics when the temperature increase value calculated on the basis of the previous value and the present value of the temperature sensor 104 is equal to or larger than a predetermined value, and that does not have the phase-lead characteristics when the temperature increase value is smaller than the predetermined value. Therefore, in a state where there is a large temperature difference between the motor coil 102 and the motor peripheral portion where the temperature sensor 104 is provided, at the time of activating the motor, for example, the heat transfer lag from the motor coil 102 to the motor peripheral portion is corrected. In a steady state where there is a small temperature difference between the motor coil 102 and the motor peripheral portion, such a correction is not performed and the influence of noise and the like is eliminated. This makes it possible to estimate the motor coil temperature more accurately.
As described above, according to the third embodiment of the present invention, the motor drive device 1 has a function of identifying a coefficient to be used for the first-order lead compensation by the motor-coil ambient-temperature estimation unit 7 on the basis of the temperature-sensor detection value of the temperature sensor 104 provided in the motor peripheral portion when driving the motor 101 with a predetermined speed pattern. Therefore, even when the motor 101 is mounted on various devices with different characteristics, it is still possible to estimate the motor coil temperature with high accuracy by using the coefficient that is identified according to the characteristics.
As described above, according to the fourth embodiment of the present invention, the motor drive device 1 has a function of identifying a coefficient by which the square value of the motor current is multiplied in the motor-coil increased-temperature estimation unit 6 on the basis of the motor current and the detection value of a temperature sensor provided in the motor peripheral portion, when driving the motor 101 with a predetermined speed pattern. Therefore, even when the motor is mounted on various devices with different heat resistances, the motor coil temperature can still be estimated with high accuracy by using the coefficient that is identified according to the heat resistance.
The invention of the present application is not limited to the above embodiments and can be variously modified at the execution stage without departing from the scope thereof. Moreover, the above-described embodiments include inventions in various stages and various inventions can be extracted by appropriately combining a plurality of disclosed components. For example, even if several components are omitted from all the components illustrated in the embodiments, a configuration in which the several components are omitted can be extracted as an invention as long as the problem described in the section of Technical Problem can be solved and the effects described in the section of Advantageous Effects of Invention can be obtained. Furthermore, the components in the different embodiments may be appropriately combined.
As described above, the motor drive device according to the present invention is useful for a motor drive device having a function of estimating a motor coil temperature, and is particularly suitable for a motor drive device having a function of protecting a motor coil from overheating on the basis of a motor-coil temperature estimation value.
1 motor drive device
2 position control unit
3 speed control unit
4 current control unit
5, 15 motor-coil temperature estimation unit
6, 16 motor-coil increased-temperature estimation unit
7, 17 motor-coil ambient-temperature estimation unit
8, 18 adder
9 motor-coil protection unit
19 temperature comparison unit
20 previous-temperature storage unit
21 first-order lead compensation unit
22 smoothing processing unit
101 motor
102 motor coil
103 position sensor
104 temperature sensor
S1 to S4, S11 to S15 step
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2012/058623 | 3/30/2012 | WO | 00 | 9/16/2014 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2013/145267 | 10/3/2013 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4712050 | Nagasawa | Dec 1987 | A |
7615951 | Son et al. | Nov 2009 | B2 |
20020159354 | Nakabayashi | Oct 2002 | A1 |
20090066283 | Son et al. | Mar 2009 | A1 |
Number | Date | Country |
---|---|---|
07-143662 | Jun 1995 | JP |
2002-324392 | Nov 2002 | JP |
2004-268671 | Sep 2004 | JP |
2005-204358 | Jul 2005 | JP |
2005-295738 | Oct 2005 | JP |
2007-010436 | Jan 2007 | JP |
2008-141941 | Jun 2008 | JP |
Entry |
---|
International Search Report for PCT/JP2012/058623 dated Jun. 5, 2012. |
Written Opinion of PCT/JP2012/058623 dated Jun. 5, 2012. |
Examination Report for the Intellectual Property Office for Taiwanese Application 101136313 dated Apr. 3, 2014. |
Communication dated Jan. 20, 2016, from the Korean Intellectual Property Office in corresponding Korean Application No. 10-2014-7029494. |
Number | Date | Country | |
---|---|---|---|
20150048772 A1 | Feb 2015 | US |