1. Field of the Invention
The invention relates to hinges for mounting motor vehicle decklid closures with at least one power assisted hinge set adapted for preassembly by simple modular integration with production installation of a primary hinge unit and secondary, selectively separable drive unit.
The present invention provides a hinge system whose embodiments may provide a cost-effective option for automating a previously known modular hinge. Each hinge set may be installed or removable as at least one integral unit. Each integral unit may be installed in and may be able to fit in numerous or a wide variety of vehicles with minimal tailoring to provide modularity and standardization. The embodiments permit changes to be included in each integral unit that do not interfere with allowing fast and non-strenuous installation of at least a primary unit portion of the hinge unit onto the vehicle body. The integral unit may also provide for simple production installation of a drive, or secondary unit, onto a mounted primary hinge unit. The engagement of the drive unit to the primary unit may be joined directly to the hinge set's pivot support, and may be installed after motor vehicle production paint processing in the assembly plant covers the primary unit.
Installed hinge set embodiments may be supplemented with actuators that allow the user to open and close the car trunk by remote activation or by manual latch disengagement such as key fob, voice recognition, cell-based communication or alternatives. As a convenience feature, such combination enables the invention embodiments to allow convenient, hands-free access to car trunk so that the user can lift in or out heavy or cumbersome items.
The embodiments of the invention may include a primary unit constructed according to U.S. patent application Ser. No. 11/446,857, filed Jun. 5, 2006, for a modular hinge, incorporated herein by reference, that may form a part of at least one of the hinge sets for the decklid. In addition, a drive unit with a coupler selectively engages a motor drive unit on a primary hinge unit. A primary unit may be one of a pair of hinge sets that are often used to support a trunk lid in production motor vehicles and a secondary unit is adapted to be received by simple displacement to engage the primary unit for mounting it integrally with the primary unit.
A control system for the unit may be activated by key fob, voice recognition or other remote activation devices. The primary or hinge unit and the secondary or drive unit may be installed and adjusted in minutes, easily and without unintentional releases of the biasing forces. The primary unit may incorporate a biasing mechanism, for example, where the embodiment preferably uses integral coiled spring assist in the primary unit, and may reduce the need for secondary units on each hinge set installed on a vehicle, and may be limited to one hinge set of the hinge. Prior to vehicle production assembly plant paint processing, the primary hinge units may be installed without the drive unit. The drive unit may include an electric motor, drive transmission, and associated control circuitry attached. An embodiment may include an output shaft for displacing the strap with the aid of a track on the secondary unit. For example, the motor may drive a pinion engaged with a rack on the secondary unit, so that the secondary unit simply engages but accurately controls displacement of the primary unit's lever. The drive unit control may be plugged into the vehicle's electronic power control system via a harness coupling or other connector.
The preferred embodiments of the invention may be of a more simple construction than prior art devices as the output of the drive unit may be guided and supported directly by the pivot axis support of the primary hinge unit, and simply positioned for direct engagement with a moveable member of the primary hinge set. Because the primary units may include spring-loaded biasing to counterbalance the decklid mass, the motor output and the physical size may be minimized. Speed, positioning, opening and closing performance of the decklid may be controlled by an electronic control system providing signals in a known manner to the motor, while features of the integral relation between primary and secondary units control pivoting movement of the decklid as desired.
In the event of a dead battery or other electrical malfunction, the trunk may be opened by the use of a conventional key-cylinder system that opens the latch, and either permits the motor to be over-ridden by the use of an integral torque limiting mechanism, or removed from engagement, to simplify movement of the trunk lid or protect the motor, transmission or other components from damage in a no-power situation.
The following drawing figures show embodiments of the construction of the motor-powered hinge for a vehicle trunk using embodiments of primary units and an embodiment of a secondary unit according to the invention. A hinge support bracket may be attached to the rear package shelf of the vehicle for reduced obstruction of the trunk compartment. The secondary unit may be anchored to the hinge bracket of a primary unit by the same support structure, such as studs protruding from the hinge bracket, or by other structure that may duplicate the attachment of the primary unit to the body structure. A side plate of the hinge bracket may hold the pivot for the strap that is attached to the decklid undersurface. In an illustrated embodiment, a track on the secondary unit, for example, a rack and pinion mechanism, couples the primary unit and secondary unit for displacing the strap about its pivot. An alternative coupling includes a C-shaped coupling that straddles the strap and positioned in alignment with the pivot axis for controlling displacement about the pivot axis.
The primary unit shown may be installed quickly, easily and without excess torsion forces affecting positioning or mounting in the vehicle. The mounting may be performed prior to conventional vehicle production paint processing. The embodiments of primary units and secondary units may be tailored to more than one vehicle environment, avoiding the conventional torque rod installation that is laborious and may impose forces unintentionally applied to ambient personnel and equipment. A secondary or drive unit may be installed quickly and easily to at least one of the hinge sets formed by a primary unit but preferably after paint processing, and provides connectors for electrical coupling such as plug and socket harness connectors, into the vehicle's control system. Prior designs proposed for integrating motor and hinge units do not easily allow separate or simple motor attachment, particularly after the primary hinge unit is installed in the vehicle. The embodiments may provide simpler construction compared to prior art hinge systems, that may not readily adapt to configured driven mechanisms. Prototypes of the illustrated embodiment substantially reduce difficulty of assembly and reduce the time to install. For example, the entire prototype system shown can be installed in 2-3 minutes under normal production conditions.
The present invention will be more clearly understood by reference to the following detailed description of a preferred embodiment in which like reference characters refer to like parts throughout the views, and in which
Referring first to
In the preferred embodiment, each of the hinge sets 30 includes a primary unit 38 in which a strap 32 is pivotally secured with respect to a hinge housing 34 adapted to be secured to the shelf 22. In an embodiment as shown where the shelf 22 is adjacent the opening for the cavity 24 in the body 20, the strap 32 may be in the form of a gooseneck bar having a curved portion that displaces the trunk away from the peripheral confines of the trunk to avoid interference between the closure 28 and adjacent body portions 21 during movement of the closure.
As best shown in
Referring now to
In the preferred embodiment, each primary unit 38 is carried by a support bracket 44 (
In addition, the bracket 44 is shown with a side plate 45 forming a support wall (
In the illustrated embodiment, the pivot 36 (
Similarly, the illustrated embodiment of the primary unit 30 includes biasing mechanism 42. The side plate 45 of bracket 44 carries a retainer bar 74 (
As best shown in
The coiled spring 80 of the biasing mechanism 42 (
As best shown in
Construction of the primary unit 38 and secondary unit 100 may be modified without departing from the invention so long as the secondary unit is made compatible with the primary unit such that it mounts adjacent to and operatively engages the primary unit so as to control movement of the strap 32 about the pivot 36. For example, a previously known hinge construction of U.S. Pat. No. 5,664,289, the adjustable decklid hinge of U.S. Pat. No. 5,967,586, or the modular hinge of U.S. Pat. No. 7,350,845 may be used as a primary unit 38 without departing from the invention, and are incorporated by reference.
As shown in
As also shown in
In the illustrated embodiment, the transmission 126 comprises a sequence of gears providing greater torque application to the pinion 122 than may be delivered from a drive unit power source such as the motor 128. The motor 128 may be selected as necessary for the power requirements designed to work with the transmission. The motor housing exposes connectors 154 for electrically coupling the motor to an electric supply and control system 156 in the vehicle. The electrical supply may apply voltage to the motor by switching in response to engagement of a key in a lock cylinder, or remote control actuation, or other actuator signaling an operator's desire to open the decklid. The control system 156 may also serve to operate the decklid in both opening and closing displacement as desired.
The transmission embodiment shown has a gear 135 that may be axially displaced by the clutch 124 to engage the gear 134. The gear 134 is on a shaft that carries a gear 133. In turn, the gear 133 engages the smaller gear 132 carried by a shaft for rotation with an output gear 142 of a drive mechanism 141 (
Preferably, the lever 32 has a gooseneck shape, often referred to as a gooseneck strap, to avoid interference between the decklid 28 and the peripheral body structure 26 in the displacement path between the open and closed positions of the hood 28. The shape or structure of the strap may change without departing from the present invention. The hinge strap may be specific to the vehicle, and tailored to its specific environment, or it may fit a wide variety of conventional models. In the illustrated embodiment, the strap 32 is a strap comprised of a bent tube that connects the decklid 28 for movement about the axis of pivot pin 52 as the biasing mechanism 42 urges the lid toward the open position, and may be employed to maintain the raised position with respect to the closed decklid position, although other structures do not depart from the present invention.
As a result, the present disclosure provides a decklid hinge for displacably supporting a decklid to and between open and closed positions over an opening defined by peripheral vehicle body structure during and after movement between the positions. At least one hinge set, although a pair of spaced hinge sets may be employed for stability in the illustrated embodiment for a vehicle decklid, may comprise a primary unit. A preferred embodiment of a primary unit comprises a support bracket with a mount for securing said bracket to the peripheral vehicle body structure; a pivot pin carried cantilevered by said support bracket, at one end of said pivot pin; and a linkage having a lever pivoted on said pivot pin, wherein said lever may be a strap to be joined to the lid.
The decklid hinge may be improved by said primary unit including a biasing drive, preferably carried on a support wall of the primary unit, for ease of installation. The biasing drive may include a retainer bar carried cantilevered by the support bracket at one end of said retainer bar; and a spring with a helically coiled strand portion, the laterally coiled portion receiving said retainer bar within, and the retainer bar retaining a first strand end of the spring.
A drive unit interconnectable to the primary unit comprises a drive mount, a coupler and a driver for controlling displacement of the coupler. The coupler slidably receives a portion of the lever at a position spaced from the pivot axis of the primary unit, that is aligned coaxially with the displacement path of the coupler. The drive mount engages the primary unit or the support structure carrying the primary unit for maintaining the coupler in engagement with the lever of the primary unit.
The disclosure also supports methods for modularizing a vehicle decklid hinge by installing a pair of hinge sets to a peripheral body structure defining an opening covered by the hood. The method comprises installing a primary unit having a mount including a support bracket engageable with the peripheral body structure, the support bracket also carrying a pivot pin cantilevered on said support bracket, and a lever pivotally mounted to the support bracket. The primary unit may include a biasing mechanism for lever pivoted on said pivot pin, including a helically coiled strand, for biasing the strand to a supported position. A method may include installing a secondary or drive unit having a support for aligning a second pivot coaxial to the pivot pin of the primary unit, a coupler engaging the lever for rotation about the second pivot, and a drive mechanism for displacing the coupler coaxially about said pin and the second pivot. The drive mechanism may include a track or guide.
Having thus described important structural features of an embodiment of the present invention, it is to be understood that the invention is not so limited, and is to be understood that variations of the details implementing embodiments of the invention do not depart from the scope and spirit of the present invention as defined in the claims.
This application claims the benefit of U.S. provisional Application No. 61/166,549 filed Apr. 3, 2009, the disclosure of which is incorporated in its entirety by reference herein.
Number | Date | Country | |
---|---|---|---|
61166549 | Apr 2009 | US |