The present disclosure concerns a motor-driven vehicle, in particular a two-wheeled vehicle, with a chassis, a central unit comprising a drive unit and a seat carrier, having a cockpit structure with a steering mechanism, an operating unit, and wheel mounts front and back with a front wheel and a rear wheel fitted to the wheel mounts.
Compact, relatively lightweight motor-driven vehicles increasingly come into their own in urban traffic in particular not only due to the high volume of traffic and the associated risk of congestion but also due to their flexibility when travelling, for example. In particular, there is a great need for two-wheeled vehicles which can be folded into transportable units, and which are designed to be easy to handle and transport.
According to some aspects, a new concept for such a motor-driven vehicle is offered, in particular a two-wheeled vehicle, with regard to construction and, most importantly, with regard to weight, which brings about significant improvements compared to products which are already on the market.
Some aspects of the current disclosure address the aforementioned problem in that the wheels of such a two-wheeled vehicle, which are fitted to wheel mounts, are hublessly suspended by means of a roller bearing via a toroidal wheel bearing rim on a wheel bearing rim which can be attached to the wheel rim likewise in the shape of a ring.
The major advantages of such a design over known designs with hub wheels are, firstly, that considerable weight can be saved through the hubless design of the wheels and, secondly, that moving the pivot points for the wheel suspension close to the support points of the wheel gives rise to advantages on the road during extension and compression. Furthermore, for such lightweight vehicles, this design has the advantage that the lower unsprung masses of the wheels significantly improve travelling comfort and road hold.
A solution according to some embodiments includes a torsion elastic suspension element, arranged on the wheel bearing rim by means of a mounting flange, possibly comprising an element housing, attached—in one piece or rigidly blocked—to the mounting flange, in which at least one, possibly four evenly distributed rod-shaped torsion elastic suspension elements in the case of an element housing with a basic rectangular shape, are introduced under tension is particularly advantageous. In an embodiment of the subject matter of the current disclosure, the suspension element(s) can be arranged under tension in the element housing by means of an essentially rod-shaped suspension element. Via the suspension core element the suspension element can be attached to the wheel mount by means of a mounting flange on the side facing the wheel mount.
Damping or suspension can be selected or set via the arrangement of the rod-shaped suspension core element in relation to the wheel bearing ring—distance centre suspension core element for the attachment of the mounting flange on the wheel bearing=lever arm for the compression of the wheel—together with the degree of elasticity and the dimensions of the suspension element.
According to some embodiments, the steerable front wheel can be connected to the wheel mount, which is steerable via the steering mechanism, by way of a support element mounted on the toroidal wheel bearing rim on the rim side, such that the notional steering axis runs through the notional centre of the wheel, is particularly advantageous. Such a design ensures that, without significant cost, the same steering movements can be made with a hubless steerable wheel as, conventionally, can be made with hub-mounted steering wheels.
In the case of a vehicle according to some embodiments, brakes such as brake discs, toroidal brake elements can be connected to the wheel rim which interact with brake shoes, which can be attached to the wheel mounts, in an essentially conventional fashion.
The driven rear wheel can comprise a toroidal drive element, which is attached to the rim, and which can be directly or indirectly driven by means of the drive unit. The drive element attached to the rim may be driven by means of an oscillating gear construction to compensate for the movements of the rear wheel.
According to some embodiments, the drive element on the rim side is a gear ring, which can be driven via a toothed belt. However, the drive element on the rim side can also be designed as a toroidal sprocket tooth, which is driven by the drive unit by means of a chain.
In some embodiments, a two-wheeled vehicle is designed as a scooter. The weight advantages of the design according to the invention can be achieved in particular in the case of a folding two-wheeled vehicle, since, due to the special wheel design, the low weight offers the ideal prerequisites for such a vehicle to have a purely electrical drive.
To take full advantage of the weight advantages, it is appropriate to design the essential components of such a vehicle, e.g. chassis, central unit for accommodating the drive, cockpit structure as well as wheel mounts as a fibre reinforced structure.
A motor-driven two-wheeled vehicle assembled in accordance with the current disclosure is shown in the drawing. The characteristics and details of the subject matter of the current disclosure are explained in more detail below with the aid of this embodiment and its details.
In the drawing:
The motor-driven two-wheeled vehicle 1 consists of a chassis 2, a central unit 3, comprising the drive unit 4 in the embodiment, and, as it is designed as an electric vehicle there, a battery box 5, a seat carrier 6 with a driver's seat 7, as well as a cockpit structure 8, comprising a steering device with handlebar 9 and operating unit. The rear wheel mount 10 and the front wheel mount 11 are pivoted on the chassis 2. In the embodiment shown, for reasons of weight the rear and the front wheel mounts 10, 11 are designed as single-arm structures. However, it is perfectly conceivable that both the rear and the front wheel mounts—or, possibly just one of the two—can be designed to overlap the wheel(s) like a fork.
The rear wheel 12 and the front wheel 13 are designed as hubless structures—as a structure also known as a “Franco Sbarro centreless wheel”. In the embodiment, wheel bearing is carried out by means of a wheel bearing rim 20 or 22, which is attached to the wheel rim 14 or 15 in the shape of a ring. The wheel bearing rim 20, 22 is part of a bearing structure, which is well-known from automotive and/or mechanical engineering, known as a roller bearing (ball, roller, needle), where one of the rings of the roller bearing sits on the wheel rim and rotates with this, and the second ring is fixed to the wheel mount 10 or 11. With regard to this bearing, the structural details for the rear wheel bearing and the front wheel bearing correspond completely or at least to a large extent.
The brake ring arranged on the rim 16 or 17, which interacts with brake shoes (not shown) attached to the wheel mounts 10 or 11, are likewise broadly the same in structural terms on the rear wheel 12 or the front wheel 13. The design of the brake shoes corresponds in essence to the current state of the art.
Likewise attached to the wheel rim 14 are a brake ring 16 and a toroidal gear ring 21 with external teeth by means of which the rear wheel is driven, e.g. by means of a pinion 23 of a drive unit 4, by means of a toothed belt. The oscillating compressing and extending wheel movements of the rear wheel 12 can be compensated for by means of a belt tensioner 24.
It is easy for the person skilled in the art to understand that different design solutions for drive as well as for wheel suspension and a suspension solution may be suitable.
Number | Date | Country | Kind |
---|---|---|---|
10 2015 105 324.1 | Apr 2015 | DE | national |
This application is a national stage filing under 35 U.S.C. § 371 of International Application No. PCT/EP2016/057473, filed on Apr. 6, 2016, which claims priority to German Application No. 10 2015 105 324.1, filed on Apr. 8, 2015. Each of these applications is incorporated herein by reference in its entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2016/057473 | 4/6/2016 | WO | 00 |