This application claims the benefit of priority to Taiwan Patent Application No. 107119475, filed on Jun. 6, 2018. The entire content of the above identified application is incorporated herein by reference.
Some references, which may include patents, patent applications and various publications, may be cited and discussed in the description of this disclosure. The citation and/or discussion of such references is provided merely to clarify the description of the present disclosure and is not an admission that any such reference is “prior art” to the disclosure described herein. All references cited and discussed in this specification are incorporated herein by reference in their entireties and to the same extent as if each reference was individually incorporated by reference.
The present disclosure relates to a motor driving circuit, and more particularly to a motor driving circuit that can compensate an extension of the equivalent duty cycle of its driving-stage circuit, which is caused by the dead time of the motor driving circuit.
In a motor driving circuit, a system control circuit is configured to generate a duty cycle signal PWM (usually, a pulse width modulation signal). A signal generation circuit is configured to generate a control signal (usually, also a pulse width modulation signal) according to the duty cycle signal PWM to control the turning on and the turning off of an upper-side transistor and a lower-side transistor of each inverter of the driving-stage circuit.
As shown in
It is assumed that the duty cycle signal PWM generated by the system control circuit is T and the on-time of the duty cycle signal PWM is Ton. According to the voltage VUO at the node UO in
In
Accordingly, even though delaying the transition edges of the pulse width modulation signals provided to the upper-side transistor and the lower-side transistor prevent the upper-side transistor and the lower-side transistor from being turned on simultaneously, there will be a difference between the equivalent duty cycle of the driving-stage circuit and the ideal duty cycle of the driving-stage circuit due to the dead time, which makes a distortion occur in the waveform of the driving current.
To prevent a lower-side transistor and an upper-side transistor of a driving-stage circuit from being simultaneously turned and to prevent a distortion of the waveform of a driving current, the present disclosure provides a motor driving circuit. The motor driving circuit helps to prevent the equivalent duty cycle of a driving-stage circuit from being shortened due to the dead time.
In one aspect, the motor driving circuit provided by the present disclosure includes a driving-stage circuit, a system control circuit, a signal generation circuit and a plurality of zero-crossing detectors. The driving-stage circuit includes a plurality of inverters connected in parallel, and each inverter includes an upper-side transistor and a lower-side transistor. The system control circuit provides a duty cycle signal. The signal generation circuit is connected between the system control circuit and the driving-stage circuit. The signal generation circuit generates a plurality of pulse width modulation signals according to the duty cycle signal to control the turning on and the turning off of the upper-side transistor and the lower-side transistor of each inverter such that the driving current is provided to drive the motor. The zero-crossing detectors are connected between the driving-stage circuit and the signal generation circuit. The zero-crossing detectors detect a current flowing through a node between the upper-side transistor and the lower-side transistor of each inverter, and accordingly generates a current sensing signal. The signal generation circuit adjusts the width modulation signals according to the current sensing signals, such that an equivalent duty cycle of the driving-stage circuit is not related to a dead time of the motor driving circuit, and a distortion of the waveform of the driving current is prevented.
In one embodiment of the motor driving circuit provided by the present disclosure, when the current sensing signal generated by one of the zero-crossing detectors indicates that the current flowing through the node between the upper-side transistor and the lower-side transistor flows outward, the signal generation circuit makes the upper edge of the pulse width modulation signal provided to the upper-side transistor occur one time segment early and makes the lower edge of the pulse width modulation signal provided to the lower-side transistor occur one time segment early. On the other hand, when the current sensing signal generated by one of the zero-crossing detectors indicates that the current flowing through the node between the upper-side transistor and the lower-side transistor flows inward, the signal generation circuit makes the lower edge of the pulse width modulation signal provided to the upper-side transistor occur one time segment early and makes the upper edge of the pulse width modulation signal provided to the lower-side transistor occur one time segment early.
Therefore, in the motor driving circuit provided by the present disclosure, the signal generation circuit adjusts and generates pulse width modulation signals according to current sensing signals, such that the equivalent duty cycle of the driving stage circuit will not be shortened due to the dead time and the distortion of the waveform of the driving current can be reduced.
These and other aspects of the present disclosure will become apparent from the following description of the embodiment taken in conjunction with the following drawings and their captions, although variations and modifications therein may be affected without departing from the spirit and scope of the novel concepts of the disclosure.
The present disclosure will become more fully understood from the detailed description and the accompanying drawings, in which:
The present disclosure is more particularly described in the following examples that are intended as illustrative only since numerous modifications and variations therein will be apparent to those skilled in the art. Like numbers in the drawings indicate like components throughout the views. As used in the description herein and throughout the claims that follow, unless the context clearly dictates otherwise, the meaning of “a”, “an”, and “the” includes plural reference, and the meaning of “in” includes “in” and “on”. Titles or subtitles can be used herein for the convenience of a reader, which shall have no influence on the scope of the present disclosure.
The terms used herein generally have their ordinary meanings in the art. In the case of conflict, the present document, including any definitions given herein, will prevail. The same thing can be expressed in more than one way. Alternative language and synonyms can be used for any term(s) discussed herein, and no special significance is to be placed upon whether a term is elaborated or discussed herein. A recital of one or more synonyms does not exclude the use of other synonyms. The use of examples anywhere in this specification including examples of any terms is illustrative only, and in no way limits the scope and meaning of the present disclosure or of any exemplified term. Likewise, the present disclosure is not limited to various embodiments given herein. Numbering terms such as “first”, “second” or “third” can be used to describe various components, signals or the like, which are for distinguishing one component/signal from another one only, and are not intended to, nor should be construed to impose any substantive limitations on the components, signals or the like.
As shown in
It should be noted that, the motor driving circuit can be adapted to a single-phase motor or a three-phase motor. Even though only two inverters INV1 and INV2 are shown in the driving-stage circuit 12 in
The working principle of the motor driving circuit in this embodiment is described as follows.
The zero-crossing detectors 18a and 18b are respectively connected between the driving-stage circuit 12 and the signal generation circuit 16. The zero-crossing detectors 18a detects the current IUO flowing through a node between the upper-side transistor U and the lower-side transistor X of the inverter INV1 and accordingly generates a current sensing signal Iu, and the zero-crossing detectors 18b detects the current IVO flowing through a node between the upper-side transistor V and the lower-side transistor Y of the inverter INV2 and accordingly generates a current sensing signal Iv. As for the inverter INV1, when the current IUO detected by the zero-crossing detector 18a is a positive current, it indicates that in the inverter INV1 corresponding to the zero-crossing detector 18a, the current IUO flows out the node UO. Is this case, the zero-crossing detector 18a generates a current sensing signal Iu at low level. On the other hand, when the current IUO detected by the zero-crossing detector 18a is a negative current, it indicates that in the inverter INV1 corresponding to the zero-crossing detector 18a, the current IUO flows into the node UO. Is this case, the zero-crossing detector 18a generates a current sensing signal Iu at high level.
Finally, the signal generation circuit 16 adjusts and generates pulse width modulation signals u and x according to the current sensing signal Iu. Adjusting the pulse width modulation signals u and x according to the current sensing signal Iu is to prevent the equivalent duty cycle of the driving stage circuit 12 from being shortened due to the dead time and to reduce the distortion of the waveform of the driving current.
Details on how the signal generation circuit 16 adjusts the pulse width modulation signals according to the current sensing signal to prevent the equivalent duty cycle of the driving stage circuit 12 from being shortened is described as follows. For ease of understanding, only the operation of the inverter INV1 is described in the following descriptions, and those skilled in the art should be able to accordingly understand the operation of other inverters.
When the zero-crossing detector 18a generates a current sensing signal Iu at low level, it indicates that in the inverter INV1, the current IUO flows out the node UO. In this case, the equivalent duty cycle of the driving-stage circuit in
On the other hand, when the zero-crossing detector 18a generates a current sensing signal Iu at high level, it indicates that in the inverter INV1, the current IUO flows into the node UO. In this case, the equivalent duty cycle of the driving-stage circuit in
For the motor driving circuit in this embodiment, due to the above adjustments of pulse width modulation signals u and x, the equivalent duty cycle of the driving-stage circuit 12 is not related to the dead time of the motor driving circuit. Therefore, the equivalent duty cycle of the driving-stage circuit 12 will not be shortened due to the dead time of the motor driving circuit.
As described, when the zero-crossing detector 18a generates a current sensing signal Iu at low level, the upper edge of the pulse width modulation signal u provided to the upper-side transistor U occurs on time segment early and the lower edge of the pulse width modulation signal x provided to the lower-side transistor X also occurs one time segment early. It is worth mentioning that, the time segment should be equal to the dead time Td of the motor driving circuit. Also, as described, when the zero-crossing detector 18a generates a current sensing signal Iu at high level, the lower edge of the pulse width modulation signal u provided to the upper-side transistor U occurs one time segment early and the upper edge of the pulse width modulation signal x provided to the lower-side transistor X also occurs one time segment early. It is also worth mentioning that, the time segment should be equal to the dead time Td of the motor driving circuit. In this manner, the equivalent duty cycle of the driving-stage circuit 12 is no longer affected by the dead time Td of the motor driving circuit.
Details on how the signal generation circuit 16 adjusts the upper edge and the lower edge of the pulse width modulation signals according to the current sensing signal is described as follows.
In this embodiment, the pulse width modulation signals provided the inverters are generated by the signal generation circuit 16 according to a duty cycle signal PWM provided by the system control circuit 14 and a preset triangular wave.
As shown in
In addition, as shown in
It should be noted that, in the above described adjustment of the preset triangular wave, the preset level should be relevant to the dead time Td of the motor driving circuit, such that the equivalent duty cycle of the driving-stage circuit 12 can be unaffected by the dead time Td of the motor driving circuit.
In conclusion, the operation of the motor driving circuit in this embodiment can be referred to in
From the above descriptions, in the present disclosure, the signal generation circuit adjusts pulse width modulation signals provided to the driving-stage circuit according to current sensing signals, to prevent the equivalent duty cycle of the driving-stage circuit 12 from being shortened due to the dead time. As a result, a distortion of the waveform of the driving current can prevented.
In short, in the present disclosure, the equivalent duty cycle of the driving-stage circuit 12 will not be shortened due to the dead time, and thus the waveform of the driving current (e.g., the current IUO) will not have a distortion.
The foregoing description of the exemplary embodiments of the disclosure has been presented only for the purposes of illustration and description and is not intended to be exhaustive or to limit the disclosure to the precise forms disclosed. Many modifications and variations are possible in light of the above teaching.
The embodiments were chosen and described in order to explain the principles of the disclosure and their practical application so as to enable others skilled in the art to utilize the disclosure and various embodiments and with various modifications as are suited to the particular use contemplated. Alternative embodiments will become apparent to those skilled in the art to which the present disclosure pertains without departing from its spirit and scope.
Number | Date | Country | Kind |
---|---|---|---|
107119475 | Jun 2018 | TW | national |