Motor for a fuel pump

Information

  • Patent Grant
  • 7345399
  • Patent Number
    7,345,399
  • Date Filed
    Thursday, November 4, 2004
    20 years ago
  • Date Issued
    Tuesday, March 18, 2008
    16 years ago
Abstract
An electrically commutated motor for a fuel pump having a rotor connected to a shaft and having plastic-bonded ferrite, with a fuel-resistant shaped body formed by the plastic-bonded ferrite, and a magnetic return element adjustable in relation to the shaped body.
Description
FIELD OF THE INVENTION

The invention relates to an electronically commutated motor for a fuel pump, comprising a rotor which is connected to a shaft in a rotationally fixed manner and has a plastic-bonded ferrite.


DISCUSSION OF THE PRIOR ART

Electronically commutated motors in the form of commutatorless DC motors, so called electronic motors, are known. Such brushless DC motors are distinguished in that they do not require servicing and the cost of producing them is comparatively low. It is also known to provide such motors with a rotor which is arranged on a shaft and is composed of a permanent-magnet material, for example a plastic-bonded barium ferrite.


One problem with the known motors is that the rotor is permanently damaged when it comes into contact with gasoline or diesel fuel, as is unavoidable when the motors are used to drive fuel pumps. Furthermore, the motors have a large spectrum of efficiency which is dependent on further system parameters.


U.S. Pat. No. 6,220,826 discloses an electronically commutated motor for a fuel pump of the type mentioned in the introduction.


U.S. Pat. No. 6,204,584 discloses a rotor for an electrically commutated motor which has a tubular permanent-magnet body with alternating poles on the circumference and a return element protruding into its continuous cylindrical through-opening, said return element having a circular basic cross section and one or more pairs of flat areas on its lateral surface. Air gaps between the return element and the tubular permanent-magnet body are formed by the flat areas. The return element can be adjusted by rotating the return element in the permanent-magnet body.


U.S. Pat. No. 6,455,975 B1 discloses a generator with a conical hub which is composed of a magnetic steel, whose lateral surface has a constant wall thickness and on which magnets are arranged.


The object of the invention is therefore to provide a motor of the type mentioned in the introduction for a fuel pump, which motor is highly efficient and at the same time has long service life.


SUMMARY OF THE INVENTION

According to the invention, this object is achieved in that the rotor has a fuel-resistant shaped body which is formed by the plastic-bonded ferrite, and in that a magnetic return element which can be adjusted in relation to the shaped body by being moved on the shaft is provided, with the shaped body having an axial recess in which the return element engages, with the axial recess having an opening side and a base side which is situated opposite the opening side and at which the shaped body is connected to the shaft, and with the axial recess forming a funnel which widens conically toward the opening side, and in that the return element forms a cone which tapers toward the base side of the recess.


The ability to adjust the return element in relation to the plastic-bonded ferrite which forms a shaped body makes it possible to match the magnetic flux specifically to the motor system while optimizing the efficiency of the motor. In this case, the shaped body allows deliberate interaction between the return element and the rotor which has two or more magnetic poles. The shaped body itself permanently retains its shape even in a fuel environment, as a result of which not only the electromagnetic properties and the power output of the motor remain constant over time, but also an unbalance of the rotor which increases wear is reliably avoided.


Particularly exact association of the shaped body and return element along with high stability of the motor arrangement is achieved by moving the return element.


A particularly compact structure is achieved by the return element engaging in the recess.


It is possible to imagine forming the recess and shaped body in such a way that the return element engages fully through the shaped body. However, particularly high stability and easy installation of the motor arrangement are achieved when the axial recess has an opening side and a base side which is situated opposite the opening side and at which the shaped body is connected to the shaft.


The ability to adjust the return element in relation to the shaped body is considerably simplified by the recess being in the form of a funnel and the return element being in the form of a cone.


If, according to one advantageous development of the invention, the opening angle of the funnel corresponds to the cone angle of the cone, the magnetic flux can be matched particularly exactly to the motor system; the lateral surface of the cone and the corresponding inner face of the funnel are always parallel to one another in this case.


In principle, any desired fuel-resistant plastics which have high deformation resistance can be used as a support for the ferrite. However, polyphenylene sulfide (PPS) is a particularly advantageous plastic which bonds the ferrite, especially for providing the shaped body with a high degree of chemical resistance and very high dimensional stability. A further advantage of PPS is its inherent flame resistance. Since the ferrite is responsible for the permanent-magnet properties of the rotor, it is also expedient if it has a high coercive force.


According to one advantageous development of the invention which was discovered from experiments, the shaped body has stabilizing fiber material. A proportion by volume of approximately 2% of glass fibers has proven particularly suitable and also cost-effective.


It is possible to imagine placing the shaped body, for example, onto the shaft and adhesively bonding them. In contrast, a particularly simple and long-lasting connection between the rotor and the shaft while at the same time avoiding an unbalance of the rotor is ensured when, according to another advantageous development of the invention, the shaped body is injection molded onto the shaft and, in a connecting region between the shaft and the shaped body, the shaft has a pattern which increases its surface roughness. This pattern may be, for example, a roughened section or—particularly advantageously—a knurled formation.


The motor can be produced in a particularly simple and cost-effective manner when, according to another advantageous development of the invention, the return element is pressed onto the shaft. In this case, the return element can be pressed onto the shaft, after the shaped body and shaft are connected, so as to ensure exact adjustment in relation to the shaped body.





BRIEF DESCRIPTION OF THE DRAWING

One exemplary embodiment of the invention is illustrated in the drawing and described in greater detail in the following text. In the drawing, the single FIG. 1 shows a partial sectional view of a motor for a fuel pump.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

The FIGURE is a schematic view of a rotor 1 of an electronically commutated motor (not illustrated in any more detail) for a fuel pump, said rotor having two or more magnetic poles. The rotor 1 is connected to a shaft 2 in a rotationally fixed manner and has a plastic-bonded ferrite 4 which is admixed with a stabilizing fiber material. The plastic-bonded ferrite 4 forms a fuel-resistant shaped body 6 which is injection molded onto the shaft 2 and at the same time is magnetized, so that it forms a multipole permanent magnet. In a connecting region 8 between the shaft 2 and the shaped body 6, the shaft 2 has a pattern 10 which increases its surface roughness and is in the form of a knurl.


The shaped body 6 also has an axial recess 12 in which a return element 14 which is composed of a soft-magnetic material 16 engages. The return element 14 increases the magnetic flux and, in accordance with requirements, may be dimensioned as a function of the shaped body 6 and the motor/pump system. The axial recess 12 in the shaped body 6 has an opening side 18 at one end and a base side 20, which is situated opposite the opening side 18, at the other end. The shaped body 6 is connected to the shaft 2 at the base side 20 of the recess 12. It can also be seen that the return element 14 is arranged entirely within the shaped body 6.


In order to adjust the return element 14 in relation to the shaped body 6, the axial recess 12 in said shaped body forms a funnel 22 which widens conically toward the opening side 18. In a manner which corresponds to the funnel 22, the return element 14 forms a cone 24 which tapers toward the base side 20 of the recess 12. In this case, the opening angle β of the funnel 22 and the cone angle β of the cone 24 correspond, so that an air gap 26 is bounded by parallel faces. When the return element 14 which is pressed onto the shaft 2 is adjusted in relation to the shaped body 6, which is done by moving said return element in the directions indicated by the double-headed arrow 28, the air gap 26 is therefore uniformly changed. The width of the air gap 26 directly influences the magnetic flux.

Claims
  • 1. An electronically commutated motor for a fuel pump, comprising a rotor which is connected to a shaft in a rotationally fixed manner and has a plastic-bonded ferrite, wherein the rotor has a fuel-resistant shaped body which is formed by the plastic-bonded ferrite, and a magnetic return element adjustable in relation to the shaped body by being moved on the shaft, with the shaped body having an axial recess in which the return element (14) engages, with the axial recess having an opening side and a base side which is situated opposite the opening side and at which the shaped body is connected to the shaft, and with the axial recess forming a funnel which widens conically toward the opening side, and in that the return element forms a cone which tapers toward the base side of the recess.
  • 2. The motor as claimed in claim 1, wherein the funnel has an opening angle and the cone has an angle, and the funnel opening angle corresponds to the cone angle of the cone.
  • 3. The motor as claimed in claim 1, wherein the plastic which bonds the ferrite is polyphenylene sulfide.
  • 4. The motor as claimed in claim 1, wherein the shaped body has stabilizing fiber material.
  • 5. The motor as claimed in claim 1, wherein the shaped body is injection molded onto the shaft, and in a connecting region between the shaft and the shaped body, the shaft has a pattern which increases surface roughness of the shaft.
  • 6. The motor as claimed in claim 1, wherein the return element is adjustable in relation to the shaped body by being moved on the shaft.
  • 7. The motor as claimed in claim 2, wherein the plastic which bonds the ferrite is polyphenylene sulfide.
  • 8. The motor as claimed in claim 2, wherein the shaped body has stabilizing fiber material.
  • 9. The motor as claimed in claim 2, wherein the shaped body is injection molded onto the shaft, and in a connecting region between the shaft and the shaped body, the shaft has a pattern which increases surface roughness of the shaft.
  • 10. The motor as claimed in claim 2, wherein the return element is adjustable in relation to the shaped body by being moved on the shaft.
  • 11. The motor as claimed in claim 3, wherein the shaped body has stabilizing fiber material.
  • 12. The motor as claimed in claim 3, wherein the shaped body is injection molded onto the shaft, and in a connecting region between the shaft and the shaped body, the shaft has a pattern which increases surface roughness of the shaft.
  • 13. The motor as claimed in claim 3, wherein the return element is adjustable in relation to the shaped body by being moved on the shaft.
  • 14. The motor as claimed in claim 4, wherein the shaped body is injection molded onto the shaft, and in a connecting region between the shaft and the shaped body, the shaft has a pattern which increases surface roughness of the shaft.
  • 15. The motor as claimed in claim 4, wherein the return element is adjustable in relation to the shaped body by being moved on the shaft.
  • 16. The motor as claimed in claim 5, wherein the return element is adjustable in relation to the shaped body by being moved on the shaft.
  • 17. The motor as claimed in claim 7, wherein the shaped body has stabilizing fiber material.
  • 18. The motor as claimed in claim 17, wherein the shaped body is injection molded onto the shaft, and in a connecting region between the shaft and the shaped body, the shaft has a pattern which increases surface roughness of the shaft.
  • 19. The motor as claimed in claim 18, wherein the return element is adjustable in relation to the shaped body by being moved on the shaft.
Priority Claims (1)
Number Date Country Kind
103 56 078 Dec 2003 DE national
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/EP2004/052799 11/4/2004 WO 00 6/1/2006
Publishing Document Publishing Date Country Kind
WO2005/055392 6/16/2005 WO A
US Referenced Citations (32)
Number Name Date Kind
2568548 Howard et al. Sep 1951 A
2694781 Hinz Nov 1954 A
3246187 Iemura Apr 1966 A
3689787 Saretzky Sep 1972 A
3754844 Nusser et al. Aug 1973 A
4045696 Lutz et al. Aug 1977 A
4651040 Gerstner et al. Mar 1987 A
4820978 Kirota Apr 1989 A
4920295 Holden et al. Apr 1990 A
5130592 Bitsch et al. Jul 1992 A
5173037 Martin et al. Dec 1992 A
5248223 Hill Sep 1993 A
5298826 Lee et al. Mar 1994 A
5574323 Nusser Nov 1996 A
5582510 Dobler et al. Dec 1996 A
5627419 Miller May 1997 A
5762481 Oi Jun 1998 A
5912523 Ziegler et al. Jun 1999 A
6109893 Gliniecki et al. Aug 2000 A
6204584 Muszynski Mar 2001 B1
6220826 Dobler et al. Apr 2001 B1
6338900 Tada et al. Jan 2002 B1
6455975 Raad et al. Sep 2002 B1
6765319 Thompson Jul 2004 B1
6868834 Mitani et al. Mar 2005 B1
6919663 Iles-Klumpner Jul 2005 B2
7061152 Petro et al. Jun 2006 B2
7156625 Grant Jan 2007 B2
7195466 Kobayashi et al. Mar 2007 B2
7239058 Petro et al. Jul 2007 B2
20020153791 Hatz et al. Oct 2002 A1
20050062354 Illes-Klumpner Mar 2005 A1
Foreign Referenced Citations (15)
Number Date Country
2756626 Jun 1979 DE
3224904 Jan 1984 DE
37 18047 Dec 1987 DE
4012161 Oct 1991 DE
43 31 803 Mar 1995 DE
29915359 Feb 2001 DE
10051239 Apr 2002 DE
103 09 776 Oct 2003 DE
0 236 116 Sep 1987 EP
0 547 767 Nov 1992 EP
1 324 474 Jul 2003 EP
04046539 Feb 1992 JP
07170682 Apr 1995 JP
200023399 Feb 1999 JP
2000245086 Sep 2000 JP
Related Publications (1)
Number Date Country
20070108860 A1 May 2007 US