Reference is made to
With reference to
In the manual control mode, the operator controls the vertical position of one or both ends of the blade 14 through a pair of manually actuatable control levers 30 and 31, located in cab 32 of the motor grader 10. Manually actuatable control lever 30 is connected to a first valve 32 including a manually actuatable control valve 34 unit and an electrically actuatable control valve 36. Manually actuatable control lever 31 is connected to a second valve 33 including a manually actuatable control valve 35 and electrically actuatable control valve 37. The control valves 34, 35, 36 and 37 are each connected between a hydraulic fluid supply (not shown), and a corresponding respective one of the hydraulic lift cylinders 20 and 21. Movement of control levers 30 and 31 allows hydraulic fluid to flow under pressure through the manual control valves 34 and 35 to actuate the hydraulic lift cylinders 20 and 21, extending or retracting the cylinders, depending upon the direction in which the control levers are moved.
Electrically actuatable or automatic control valves 36 and 37 are each connected between the hydraulic fluid supply (not shown) and a respective one of the hydraulic lift cylinders 20 and 21 to control extension and retraction of the corresponding hydraulic lift cylinders 20 and 21 in response to signals on lines 50 and 52. The automatic control valves 36 and 37 are electrically coupled to the controller 28. Controller 28 provides command signals to adjust the elevational position of corresponding blade ends through actuation of respective hydraulic lift cylinders 20 and 21. The automatic control valves 36 and 37 are connected in parallel with the manual control valves 34 and 35, respectively, and are operable independently from the manual control valves 34 and 35, as described below.
The control system further includes a first hydraulic cylinder position sensor 40 for determining the extended position of the first hydraulic cylinder 20 and providing this information to the controller 28. The sensor may be any of a number of known sensors that are suitable for this purpose. The controller 28 is responsive to a control input 45 that specifies the desired height and cross slope of the blade 14. The controller 28 is responsive to control input 45 specifying the desired height, to the hydraulic cylinder position sensor 40, and to the inclinometer 48, for providing valve control signals to the first and second hydraulic valves 36 and 37. In one automatic mode, the controller 28 provides a first valve control signal on line 50 to the first hydraulic valve 36 in dependence upon desired height specified by the control input 45, and the control 28 provides a second valve control signal on line 52 to the second hydraulic valve 37 in dependence upon the inclinometer output on line 60 and upon the cross slope specified by the control input 45.
A difficulty encountered with this arrangement occurs when the control input on line 50 calls for movement of cylinder 20, or when the valve 36 is actuated in such a way as to call for movement of cylinder 20. If the inclinometer output were to be used to determine the control signal on line 52, no corresponding change in the extension or retraction of the cylinder 21 would be effected quickly, resulting in the blade 14 being inaccurately oriented. The present invention eliminates this problem by using the hydraulic cylinder position sensor 40. During times when the blade 14 is to be moved upward or downward, the control 28 provides the second valve control signal 52 to the second hydraulic valve 37 in dependence upon the hydraulic cylinder position sensor 40 which determines the extended position of the first hydraulic cylinder 20, such that the second hydraulic cylinder 21 extends and retracts in a manner corresponding to the extension and retraction of the first hydraulic cylinder 20. The amount of extension or retraction of the hydraulic cylinder is a function of the geometry of the cylinders and blade support components and linkages, but is effected in such a way as to keep the cross slope angle cut by the blade 14 constant. It will be appreciated that this will eliminate the inaccuracies that have resulted from inclinometer damping and the resulting signal delay.
It will be appreciated that it may be desired that the second cylinder 21 be controlled in a closed loop manner, rather than being driven open loop. A control system using such closed loop control is shown in
With reference to
In the manual control mode, the operator can control the vertical position of one or both ends of the blade 14 through the pair of manually actuatable control levers 30 and 31, which are connected to valves 34 and 35, respectively. The automatic control valves 36 and 37 are electrically coupled to the controller 28. Controller 28 provides command signals to adjust the elevational position of a corresponding blade side through actuation of a respective hydraulic lift cylinder 20 and 21.
As with the previous embodiment, the control system includes a hydraulic cylinder position sensor 40 for determining the extended position of the first hydraulic cylinder 21 and providing this information to the controller 28. The controller 28 is responsive to a control input 45 that specifies the desired height and cross slope of the blade 14. The control 28 is responsive to control input 45 specifying the desired height, to the hydraulic cylinder position sensor 40, and to the inclinometer 48, for providing valve control signals to the first and second hydraulic valves 36 and 37. In one automatic mode of operation, during periods when the grader blade 14 is to be maintained a constant height and inclination, the control 28 provides a first valve control signal on line 50 to the first hydraulic valve 36 in dependence upon desired height specified by the control input 45, and the control 28 provides a second valve control signal on line 52 to the second hydraulic valve 37 in dependence upon the inclinometer output on line 60 and upon the cross slope specified by the control input 45.
When the valve 34 or the valve 36 is actuated to call for movement of cylinder 20, the inclinometer output is not used to determine the control signal on line 52. Rather, the control 28 provides the second valve control signal 52 to the second hydraulic valve 37 in dependence upon the hydraulic cylinder position sensor 40 which determines the extended position of the first hydraulic cylinder 20 and in dependence upon the hydraulic cylinder position sensor 62 and the geometry of the cylinders 20 and 21 and cylinder linkage, such that the second hydraulic cylinder 21 extends and retracts with the first hydraulic cylinder 20 in a manner that keeps the cross slope cut of the blade 14 at a constant angle. It will be appreciated that this will eliminate the inaccuracies that might have resulted from the valve 37 being driven in an open loop fashion.
The control system includes an automated system for controlling the control input to provide valve control signals to the valves in dependence upon the location of the motor grader, which may include a laser or GPS based blade position sensor 60. The system determines the x and y position of the motor grader blade as the motor grader moves across the construction site or along the road bed. The vertical position of the blade is then determined by either GPS or laser measurement and compared with the desired vertical position. The blade is then raised or lowered to bring this difference to null and the blade is tilted to the desired position by relative movement of the cylinders 20 and 21 and measurement of the inclination of blade 14 with inclinometer 48 with respect to horizontal. When the blade is to be raised or lowered, the cylinder 21 is driven in dependence upon the movement of the cylinder 20 without reference to the inclinometer output until a new steady state operating position is achieved. At this point the output of the inclinometer 48 is again to control the extension of cylinder 21.
Other aspects, objects and advantages of the present invention can be obtained from a study of the drawings, the disclosure and the appended claims.