1. Field of the Invention
The present invention relates to a new motor having core structure of a stator or a rotor wherein the magnetic circuit is designed in a three dimensional configuration, for example, in a stepping motor, linear motor, brush-less motor and axial gap motor.
2. Prior Art
[Patent Literature 1] Japanese Application Patent Laid-open Publication No. Hei 05-308768
[Patent Literature 2] Japanese Application Patent Laid-open Publication No. Hei 08-242572
[Patent Literature 3] Japanese Application Patent Laid-open Publication No. Hei 09-56139
[Patent Literature 4] Japanese Application Patent Laid-open Publication No. Hei 09-65638
[Patent Literature 5] Japanese Application Patent Laid-open Publication No. Hei 09-182329
[Patent Literature 6] Japanese Application Patent Laid-open Publication No. Hei 09-233737
[Patent Literature 7] Japanese Application Patent Laid-open Publication No. Hei 11-127548
A motor comprises a core made of magnetic material and a coil as a conductor. In order to reduce eddy current and to increase saturated magnetic flux density, the soft magnetic core is generally made by lamination of thin silicon steel sheets composed of steel containing silicon in many cases. Basically, any soft magnetic substance can be used to produce a motor core. So if the motor efficiency can be reduced, it is possible to manufacture the core using a material of low magnetic permeability or steel block. However, there is virtually no example where such a material is used in a product.
The prior art of the above-mentioned motor is disclosed in the [Patent Literature 2] where a powdered iron core is used as a stator core, and in the [Patent Literature 3] and [Patent Literature 4] where sintered powdered iron core is used to make the stator core of a stepping motor. These literatures disclose the method of producing a motor using a powdered iron core. The stator configuration according to these literatures is based on the method for manufacturing a motor by replacing the stator core of a general motor with a powered ion core.
The [Patent Literature 1] shows an example of using a powdered iron core to make the stator yoke of a stepping motor, and [Patent Literature 5] discloses an example of using a composite sintered substance containing both ferromagnetic and non-magnetic portions to manufacture a rotor. The [Patent Literature 6] gives an example of using the sintered body of soft magnetic material to make a rotor, and [Patent Literature 7] indicates an example of utilizing a hard magnetic metallic glass to produce the rotor of a stepping motor.
(Problems to be Solved by the Invention)
In the prior art, giving consideration to the magnetic characteristics of the laminated steel plate, the magnetic circuit of the motor constitutes a magnetic circuit that closes upon flowing of the magnetic flux through the two-dimensional plane. Accordingly, the magnetic path between the stator and rotor is used for the flowing of the magnetic flux through the two-dimensional plan only between them. On the other hand, the soft magnetic material such as powdered iron core or sintered core is structured in such a way that the magnetic substance is present three dimensionally and uniformly in a non-oriented manner; it not structured in such a way that sheets are laminated through an insulation layer. This causes the eddy current with respect to the magnetic flux on the two-dimensional plane to occur on the plane perpendicular to the two-dimensional plane, with the result that the motor efficiency is deteriorated and core temperature is raised.
The maximum saturated magnetic flux density and magnetic permeability of the powdered iron core or sintered core are lower than that of the iron. This requires greater magnetic field intensity to get the same magnetic flux density. This results in an increased current value, reduced motor efficiency and greater core loss causing a higher coil temperature.
Further, because of insufficient mechanical strength and vulnerability to impact or excessive stress, the magnetic characteristics are reduced if there is an increase in the amount of resin as a binder.
Thus, the object of the present invention is to provide a motor characterized by a high level of efficiency equal to or better than that of using the silicon steel plate, achieved by easy production method and reduced core loss, which result from reduction in the manpower for production by using the sintered metal or powdered iron core in at least one of the stator and rotor.
(Means for Solving the Problems)
Paying attention to the three dimensional, non-oriented features of the magnetic sintered metal or powdered iron core, the present invention provides a motor characterized in that a three dimensional magnetic path is formed to provide the magnetic structure that allows the main magnetic flux flowing between said stator and rotor to be changed in the three-dimensional directions, and a compensatory structure by the three dimensional non-oriented feature is employed in place of the magnetic path only for the two-dimensional plane using the conventional silicon steel plate, whereby the performances equal to or better than those of the one using the conventional silicon steel plate have been realized.
In other words, the present invention permits a three dimensional magnetic path to be formed, and this structure allows a great amount of magnetomotive force of the magnet on the rotor side to be collected by the stator. To put it more specifically, the structure is designed in such a way that the length of the magnet in the axial direction is greater than the laminated thickness of the stator core made of the magnetic sintered metal in the axial direction, and a great amount of magnetic flux can be collected from the magnet by the end of the core in the direction of laminated thickness. Further, even when the length of the magnet is the same as the laminated thickness of the tip of the stator core tee, the magnetic flux entering from the tee tip can be increased as a coil flux linkage if the laminated thickness of the portion where a coil is wound is reduced below the length of the magnet.
The present invention provides a motor comprising a stator and a rotor wherein either one of the above-mentioned stator or rotor has a magnet, and the other has a magnetic substance. This motor is characterized in that the density of the main magnetic flux flowing between the above-mentioned stator and rotor changes in the three-dimensional directions according to the magnetic structure of this motor. To put it more specifically, this motor is designed to have a magnetic structure in such a way that the density of the main magnetic flux flowing between the above-mentioned stator and rotor changes in the three-dimensional directions, and at least part of the above-mentioned magnetic substance is composed of an aggregate of magnetic powder.
It is preferred that the aggregate of magnetic powder of the present invention be made of powdered iron core or sintered metal. Powdered iron core is formed into a predetermined shape by an organic resin binder or an inorganic binder, using the magnetic powder with or without oxide film. In the similar manner, the sintered metal is formed by sintering of magnetic powder.
Further, the present invention provides a motor comprising a stator and a rotor wherein either one of the above-mentioned stator or rotor has a magnet, and the other has a magnetic substance. This motor is characterized in that part of the magnetic substance is composed of an aggregate of magnetic powder.
Further, the present invention provides a motor comprising a stator and a rotor wherein either one of the above-mentioned stator or rotor has a magnet, and the other has a magnetic substance. This motor is characterized by having a magnetic structure that allows the density of the main magnetic flux to change in the three-dimensional directions, wherein the portion of the above-mentioned magnetic substance where the main magnetic flux in the two-dimensional plane flows is formed by a silicon steel plate, and the portion where the main magnetic flux changes in the three-dimensional directions is formed by a aggregate of magnetic powder.
Still further, the present invention provides a motor comprising a stator and a rotor wherein either one of the above-mentioned stator or rotor has a magnet, and the other has a magnetic substance. This motor is characterized by any one of the following structures: The motor has a magnetic structure where the lengths of the above-mentioned stator and rotor in the axial direction are different. It has a magnetic structure where the lengths of the stator and rotor in the axial direction are different, and at least part of the magnetic substance is composed of an aggregate of magnetic powder. The magnetic substance is formed by powdered iron core or sintered metal being injection-molded integrally to the laminate of the silicon steel plate. At least part of the magnetic substance is composed of bulky magnetic metallic glass. The magnetic substance is formed by bulky magnetic metallic glass being injection-molded integrally to the laminate of the above-mentioned silicon steel plate.
Still further, the present invention provides a motor comprising a stator having a coil wound on a magnetic substance and a rotor having a magnet, wherein this rotor is provided on the outer or inner periphery of the above-mentioned stator. This motor has a magnetic structure where the length of the magnet in the axial direction is greater than that of the stator, and at least part of the magnetic substance is composed of an aggregate of magnetic powder.
Still further, the present invention provides a motor comprising a stator having
a magnetic substance, a coil wound on the above-mentioned magnetic substance, and multiple pole teeth provided on the tip of the magnetic pole of the above-mentioned magnetic substance, and
a rotor having a magnet, magnetic substances located on both sides of the magnet sandwiched in-between and on the outer periphery thereof without contacting each other, and multiple pole teeth provided on the tip of the magnetic pole of the magnetic substance. This motor is further characterized in that at least pat of the magnetic substance of at least one of the stator and rotor is formed by powdered iron core or sintered metal.
For the three dimensional magnetic circuit of the stepping motor or the like, it is possible to use a powdered iron core and sintered metal core to form the core back portion, while the silicon steel plate forming the tee tip and coil is kept unchanged. This can improve overall magnetic permeability, hence motor performances. According to this production method, the tee portion manufactured by the punched laminated layer of the silicon steel plate is set inside the sintered core molding die, and the core back portion is formed by sintering under this condition. The inserted silicon steel plate and sintered core hybrid material are complementary with each other wherever required, thereby allowing the motor efficiency to be improved.
Similarly, for the linear motor and axial gap type motor, the overall motor efficiency can be improved by using the structure where the sintered core and powdered iron core are used in the portion where there are three-dimensional changes in the magnetic flux vector.
To put it specifically, the present invention provides a motor comprising a ring-shaped stator and a ring-shaped rotor wherein either one of said stator or rotor has a magnet, and the other has a magnetic substance. This motor is further characterized in that the main magnetic flux flowing between said stator and rotor changes in the three-dimensional directions according to the magnetic structure of this motor; alternatively, the main magnetic flux flowing between said stator and rotor changes in the three-dimensional directions according to the magnetic structure of this motor, and at least part of the magnetic substance is composed of an aggregate of magnetic powder.
To put it more specifically, the present invention provides a motor comprising a stator having a ring-shaped magnetic substance and multiple coils provided on one of the surfaces, and a rotor having a ring-shaped magnet. This motor is further characterized in that:
a magnetic substance projecting toward the above-mentioned rotor is formed on the inner periphery of the above-mentioned coil;
a magnetic substance projecting toward the above-mentioned rotor is formed on the inner periphery of the above-mentioned coil and at least part of the magnetic substance is composed of powdered iron core or sintered metal; or
a magnetic substance projecting toward the above-mentioned rotor is formed on the inner periphery of the above-mentioned coil and at least part of the magnetic substance is composed of an aggregate of magnetic powder.
Still further, the present invention provides a motor comprising a non-magnetic cylindrical substance, a coil wound on the non-magnetic cylindrical substance in a concentric circle and a ring-shaped magnet on the inner periphery of the cylindrical substance, wherein the oil is embedded in the aggregate of magnetic powder.
As described above, when the bulky material of magnetic metallic glass alloy as a soft magnetic material is used in the motor, the motor efficiency can be improved by the structure where this material is used in the portion where the motor magnetic flux undergoes other than the same plane.
The following describes the magnetic metals constituting the powdered iron core or sintered metal as an aggregate of magnetic powder of the present invention. In any case, the soft magnetic metal power and binder (organic binder) are prepared and are kneaded by a kneader to get a kneaded substance, which is molded by an injection molding machine and is then sintered to produce a magnetic metal product.
The material used include soft steel, Fe—Si based metallic material containing 1.0 through 8.0 wt % Si, more preferably, 1.5 through 6.5 wt % Si, a sendust containing 13 through 8 wt % A added to it, Fe—Si—B based metallic material containing Si in about the same amount as the above and 0.2 through 3 wt % B, Fe—Ni based metallic material containing 70 through 85 wt % Ni or the material with part of Ni replaced by Co. To achieve various objects such as improvement of the magnetic characteristics, it is preferred that at least one of Mn, Cr, Mo, Cu, P, V, Ti, Ga, Zr, Zn and various types of rare-earth elements be added to the above-mentioned material. The average particle diameter of the metal powder used is preferred to be 5 through 100 microns, more preferably, 5 through 50 microns. In any of the metallic powder types, the material with or without oxide film is used.
A binder can be made of the material of olefin based resin such as polyethylene and polypropylene, acryl resin, styrene based resin such as polystyrene, various types of thermosetting resins such as polyamide, polyimide, polyester, polyether, liquid crystal polymer and polyphenylene sulfide or various types of wax and paraffin, or a mixture of two or more of these materials. The amount of binder to be added is about 2 through 50 wt %, more preferably, 2 through 10 wt %.
(Description of the Preferred Embodiment)
In the present embodiment, the five types of soft magnetic metallic powder (each of them having an average particle diameter of about 30 microns with or without oxide film on the surface; soft steel, Fe-3.5 wt % Si alloy powder, Fe—Si—B alloy powder with 1% B added to it, Fe—Si—Al alloy (sendust) powder, and F-77 wt % Ni-0.3 wt % Co-1 wt % Si-0.5 wt % Mn alloy (supermalloy), as well as polyethylene as a binder, were prepared. They were mixed so that the mount of binder would be 2 wt %. They were kneaded by a kneader to get the kneaded substance. Then this kneaded substance was molded by an injection molding machine to produce a product shaped as a stator core as shown in
Since the stator core 1 can be molded by sintering, the shape of the tee can be formed as desired. This makes it possible to arrange the structure in such a way that the tip is thick and coil winding portion is thin. Further, since a binder is used to provide isolation, it can also be used as an insulator. The sintered metal and powdered iron core can be used as a winding bobbin material, as shown in 4B. This structure provides a function as an insulator in addition to the effect of the structure shown in
The following describes the manufacturing method by injection molding when manufacturing the end as shown in
In the present embodiment as shown in
Changes in the magnetic flux due to rotation occur as shown in
Observation of the changes in the magnetic flux vector in
In this embodiment, for part or whole of either or both of the stator core 1 and rotor, a magnet and magnetic substance are formed on the one hand, and a magnetic substance on the other. The magnetic substance is formed by the powdered iron core or sintered metal according to the present invention.
Magnetic flux linked with the coil 10 flows through the wound portion of a coil 10. The magnetic flux linked with the coil 10 flows to the magnetic flux, but it flows in the circumferential direction on the core back portion. This motor is not restricted only to flow of magnetic flux through the X-Y plane alone. So it is difficult to use the silicon steel plate. Generally, such a small-sized motor as a low-profile motor uses an air-core coil, without a magnetic substance being used in many cases. To form an axial gap motor in a large-sized motor, use of a magnetic substance is essential. When the stator and rotor is to be formed, use of the powdered iron core or sintered metal is effective.
The present invention improves the efficiency of a motor equipped with a three dimensional magnetic path and reduces the size of the motor. Since powdered iron core or sintered metal can be manufactured by molding operation, it will save manpower and will improve the yield of materials, without the motor performances being lost, as compared to the structure of a punched lamination layer, with the result that an economical motor will be provided. Further, the present invention provides the structure that improves the space factor of the winding and allows the winding to be enclosed with an iron core. This ensures that heat generated from the coil is discharged by heat conduction to the core, and provides a motor characterized by excellent temperature characteristics. At the same time, this will ensure a substantial improvement in efficiency of a high frequency motor due to reduced core loss.
Number | Date | Country | Kind |
---|---|---|---|
2002-319287 | Nov 2002 | JP | national |
Number | Date | Country | |
---|---|---|---|
Parent | 10641391 | Aug 2003 | US |
Child | 11326457 | Jan 2006 | US |