This invention relates to a motor having a stator with generally planar windings.
A motor may have a stator winding that is associated with a printed circuit board. Although such a motor may be axially compact, the printed circuit board does not provide a convenient medium for liquid cooling of the motor to achieve compliance with high density performance requirements. For example, a multilayer circuit board with cooling channels for a liquid coolant may be too expensive or lack the reliability of more traditional motor configurations in which windings are wound from wire. Thus, there is a need for an axially compact motor that supports liquid cooling or to achieve compliance with high density performance requirements.
In accordance with one aspect of the invention, an electric motor features liquid cooling capability. A rotor and a secondary rotor are coupled to a shaft for rotation therewith. The rotor comprises a first annular member and magnets secured to the first annular member. The secondary rotor comprises a second annular member and secondary magnets secured to the second annular member. A stator is spaced axially apart from the rotor and the secondary rotor. The stator comprises a plurality of generally planar windings secured to a magnetic core and a secondary planar windings secured to a secondary magnetic core. The magnetic core has at least one cooling channel.
With respect to the rotor 10, the first annular member 30 comprises an iron or ferrous core. As shown in
With respect to the stator 12, the generally planar windings 14 comprise a metal traces or patterns on a dielectric substrate, such as printed circuit board. In one embodiment, the planar windings 14 are composed of at least one of copper and nickel-copper alloy. The planar windings 14 may be formed by a series of electrically conductive traces (e.g., curved or rectilinear traces) that are spaced apart from each other. The conductive traces may be formed of a metal or alloy and may be organized in rows. Although virtually any suitable ratio of stator poles (of the stator 12) to rotor poles (of the rotor 10) may be used in the motor 11, in one illustrative embodiment, the ratio of stator poles to rotor poles is approximately 3:2.
The magnetic core 16 is affixed to the planar windings 14 via dielectric layer 28. The dielectric layer 28 may be composed of a thermally conductive adhesive, a polymeric adhesive, a plastic adhesive, or another adhesive. For example, the dielectric layer 28 may comprise a high isolation dielectric to provide an electrically insulating barrier between the magnetic core 16 and the planar windings 14. The cooling channel 308 is routed through the magnetic core 16 to provide a cooling jacket or path (e.g., a circuitous or winding path) for the circulation of coolant. In one example, the cooling jacket or cooling channel 308 may be generally spiral. In another example, the cooling channel 308 may be arranged as a series of generally parallel rows.
The cooling jacket or cooling channel 308 terminates in an inlet 31 and an outlet 32. The inlet 31 is capable of receiving a pressurized or gravity fed coolant fluid and an outlet 32 is capable of discharging a coolant fluid. In one arrangement for a gravity fed configuration, the inlet 31 may be positioned on a top of the magnetic core 16, whereas the outlet 32 is positioned on a bottom of the magnetic core 16.
In one embodiment, the magnetic core 16 comprises a composite ferromagnetic core 16. The magnetic core 16 is composed of powdered magnetic material and a matrix. For example, the powdered magnetic material is distributed within a polymeric matrix or plastic matrix. The powdered magnetic material may comprise a rare earth magnet, a samarium cobalt magnet, an neodymium iron boron magnet, an iron magnet, an iron alloy magnet, or a ferromagnetic material.
The magnetic core 16 supports a magnetic flux path through the stator 12 for the electromagnets formed by energizing the planar windings 14. The magnetic core 16 may store energy in a magnetic field in proportion to the electrical energy that energizes the planar windings 14. The magnetic field in the magnetic core 16 is subject to losses from hysteresis and eddy currents, for example. However, the powdered magnetic material tends to limit eddy current losses for a varying flux field such that hysteresis losses tend to predominate over eddy current losses. The polymeric matrix and plastic matrix may comprise a fluoroplastic, fluoropolymer, or another dielectric material that is thermally stable or heat resistant for the operational temperature range of the motor 11.
In an alternate embodiment, the magnetic core 16 may comprise a ceramic or ferrite material.
Dielectric layer 28 is located between the planar windings 14 and the magnetic core 16. The dielectric layer 28 adhesively bonds the planar windings 14 to the magnetic core 16. In one embodiment, the dielectric layer 28 comprises a thermally conductive dielectric.
The motor 11 has a plurality of bearings 20. A housing 24 or casing supports the shaft 22 via the bearings 20. In one embodiment, the bearings 20 comprise radial bearings. As shown in
The motor 111 of
The motor 111 of
A stator 112 comprises the generally planar windings 14 and the secondary planar windings 114. In particular, the stator 12 comprises a plurality of generally planar windings 14 secured to a first side of a magnetic core 16 and secondary planar windings 114 secured to a second side of a magnetic core 16. The magnetic core 16 has at least one cooling channel 308 associated with the second side of the magnetic core 16. The stator 12 is spaced axially apart from the rotor 10 and the secondary rotor 10.
The secondary rotor 110 comprises secondary magnets 126 mounted on a second annular member 130. Although the second annular member 130 has recesses 153 for receiving the secondary magnets 126 as shown, in an alternate embodiment the recesses may be omitted. The secondary magnets 126 may be adhesively bonded to the second annular member 130, press-fitted into the recesses, attached with fasteners, or otherwise secured to the second annular member 130. The second annular member 130 may be composed of iron or a ferrous material.
The magnets 26 and the secondary magnets 126 are arranged in a first ring and a second ring, respectively. The first annular member 30 comprises a first iron or ferrous core for supporting the magnets 26. The second annular member 130 comprises a second iron or second ferrous core for supporting the secondary magnets 26.
The planar windings 14 comprise electrically conductive traces on a first dielectric substrate. The secondary planar windings 114 comprise electrically conductive traces on second dielectric substrate. In one embodiment, the planar windings 14 are composed of at least one of copper and nickel-copper alloy. Although virtually any suitable ratio of stator poles to rotor poles may be used in the motor 111, in one illustrative embodiment, the ratio of stator poles to rotor poles is approximately 3:2 with respect to the stator 112 and rotor 10, respectively, and with respect to the stator 112 and the secondary rotor 110, respectively.
The magnetic core 16 comprises a composite ferromagnetic core. In one embodiment, the magnetic core 16 is composed of powdered magnetic material and a polymer matrix. A first dielectric layer 28 is located between the planar windings 14 and the magnetic core 16 and a secondary dielectric layer 128 is located between secondary planar windings 114 and the magnetic core 16. In one configuration, the dielectric layer 28 and the secondary dielectric layer 128 each comprise a thermally conductive dielectric, a polymeric adhesive, a plastic adhesive, or another adhesive. For example, the secondary dielectric layer 128 may comprise a high isolation dielectric to provide an electrically insulating barrier between the magnetic core 16 and the secondary planar windings 114. The cooling channel 308 (in
In
The motor 211 of
The motor 211 of
In
A stator 212 is spaced axially apart from the rotor 10 and the secondary rotor 110. The stator 212 comprises a plurality of generally planar windings 14 secured to a magnetic core 16 and secondary planar windings 114 secured to a secondary magnetic core 116. The magnetic core 16 and the secondary magnetic core 116 may be joined together or sealed together by a sealing member 500. The magnetic core 16 and the secondary magnetic core 116 have one or more cooling channels (e.g., a generally spiral cooling channel). The cooling channels terminate in an inlet 31 and an outlet 32.
The magnets 26 are arranged in a first ring and the secondary magnets 126 are arranged in a second ring. The first annular member 30 comprises a first iron or first ferrous core; the second annular member 130 comprises a second iron or second ferrous core.
The planar windings 14 comprise first conductive traces on a first dielectric substrate. The secondary planar windings 114 comprise secondary conductive traces on a secondary dielectric substrate. In one embodiment, the conductive traces are composed of at least one of copper and nickel-copper alloy. Although virtually any suitable ratio of stator poles to rotor poles may be used in the motor 211, in one illustrative embodiment, the ratio of stator poles to rotor poles is approximately 3:2 with respect to the stator 212 and rotor 10, respectively, and with respect to the stator 212 and the secondary rotor 110, respectively.
In one configuration, the planar windings 14 are formed on a first printed circuit board. The secondary planar windings 114 are formed on a second printed circuit board. The magnetic core 16 comprises a first composite ferromagnetic core; the secondary magnetic core 116 comprises a second composite ferromagnetic core. In one embodiment, the magnetic core 16 is composed of a powdered magnetic material and a polymer matrix; the secondary magnetic core 116 is composed of powdered magnetic material and a polymer matrix. Dielectric layer 28 is located between the planar windings 14 and the magnetic core 16. A secondary dielectric layer 128 is located between the secondary planar windings 114 and the secondary magnetic core 116. The dielectric layer 28 and the secondary dielectric layer 128 comprise a thermally conductive dielectric. For example, the secondary dielectric layer 128 may comprise a high isolation dielectric to provide an electrically insulating barrier between the secondary magnetic core 116 and the secondary planar windings 114.
In
Advantageously, in any embodiment of the motor disclosed herein, the planar windings (e.g., 14, 114) may be readily changed, revised, replaced, upgraded or updated. For example, the ratio of stator poles to rotor poles is readily changed to any desired ratio. Further, the resistance, reluctance or impedance characteristics of the planar windings are readily changed to accommodate different controllers or control configurations.
Having described the preferred embodiment, it will become apparent that various modifications can be made without departing from the scope of the invention as defined in the accompanying claims.
This document (including the drawings) claims priority based on U.S. provisional Ser. No. 60/854,823, filed Oct. 26, 2006, and entitled MOTOR HAVING A STATOR WITH GENERALLY PLANAR WINDINGS, under 35 U.S.C. 119(e).
Number | Name | Date | Kind |
---|---|---|---|
112233 | Fagan | Feb 1871 | A |
2920574 | Sampietro | Jan 1960 | A |
3189770 | Henry-Baudot | Jun 1965 | A |
3296475 | Parker | Jan 1967 | A |
3709835 | Forster | Jan 1973 | A |
4307309 | Barrett | Dec 1981 | A |
4340833 | Sudo et al. | Jul 1982 | A |
4413895 | Lee | Nov 1983 | A |
4503368 | Sakamoto | Mar 1985 | A |
4594524 | Sudo | Jun 1986 | A |
4658162 | Koyama et al. | Apr 1987 | A |
4658332 | Baker et al. | Apr 1987 | A |
4733115 | Barone et al. | Mar 1988 | A |
5252881 | Muller et al. | Oct 1993 | A |
5294853 | Schluter et al. | Mar 1994 | A |
5334898 | Skybyk | Aug 1994 | A |
5334899 | Skybyk | Aug 1994 | A |
5646465 | Paweletz | Jul 1997 | A |
5710476 | Ampela | Jan 1998 | A |
5783893 | Dade et al. | Jul 1998 | A |
5982074 | Smith et al. | Nov 1999 | A |
6011337 | Lin et al. | Jan 2000 | A |
6181048 | Smith et al. | Jan 2001 | B1 |
6304011 | Pullen et al. | Oct 2001 | B1 |
6663362 | Lentz et al. | Dec 2003 | B1 |
6707208 | Durham et al. | Mar 2004 | B2 |
6741010 | Wilkin | May 2004 | B2 |
6794791 | Ahmed et al. | Sep 2004 | B2 |
7109625 | Jore et al. | Sep 2006 | B1 |
20020171324 | Smith et al. | Nov 2002 | A1 |
20030007442 | Henrichs | Jan 2003 | A1 |
20030062780 | Kaneko et al. | Apr 2003 | A1 |
20040135465 | Smith et al. | Jul 2004 | A1 |
20050088052 | Ionel et al. | Apr 2005 | A1 |
20060202584 | Jore et al. | Sep 2006 | A1 |
Number | Date | Country |
---|---|---|
353042 | Jan 1990 | EP |
WO 0147089 | Jun 2001 | WO |
Number | Date | Country | |
---|---|---|---|
20080100174 A1 | May 2008 | US |
Number | Date | Country | |
---|---|---|---|
60854823 | Oct 2006 | US |