This disclosure relates in general to submersible well pump assemblies and in particular to standoffs for providing a fluid flow gap between the motor lead and the pump housing.
Electrical submersible pumps (ESP) are employed in many oil wells to pump well fluid from the well. A typical ESP has an electrical motor coupled to the pump for driving the pump. A seal section or pressure equalizer connects to the motor for equalizing a pressure of dielectric lubricant inside with the well fluid pressure on the exterior. Usually, the pressure equalizer locates between the motor and pump. The ESP may also have a gas separator connected to a lower end of the pump. A string of production tubing usually supports the ESP within the well. An electrical power cable extends downward alongside the tubing from a wellhead assembly. A lower portion of the power cable, referred to as a motor lead, extends alongside the pump, gas separator, if employed, and pressure equalizer to a connector at the upper end of the motor.
The motor lead normally comprises a cable with three electrical power wires side by side in a flat configuration. Each electrical power wire includes a copper core or conductor with one or more layers of electrical insulation. A lead sheath may be extruded around the electrical insulation to provide protection in gassy wells. An outer armor band wraps helically around the sub assembly of electrical power wires.
In some wells, the pump can become hot enough to cause damage to the motor lead. Typically, the heat occurs as a result a lack of well fluid flowing through the pump due to gas locking or pump-off conditions. The excess heat in the pump, as well as any excess heat in the pressure equalizer and/or gas separator, may transfer to the motor lead. The excess heat is particularly a problem with motor leads having lead sheaths. Excessive heat causes the lead sheaths to soften and change shape, becoming thinner. If too thin, the lead sheaths may not be able to provide the desired protection to the electrical conductor insulation layers.
U.S. Pat. No. 9,958,104 discloses a thermal insulation layer to retard heat transfer to the motor lead. The thermal insulation layer is located between the motor lead and the exterior of the pump housing.
An electrical submersible pump assembly for pumping well fluid from a well, comprises a pump having a tubular pump housing with a longitudinal axis. A motor operatively connects to the pump for driving the pump. A motor lead extends alongside the pump housing to the motor for supplying electrical power to the motor. At least one standoff wedges between the pump housing and the motor lead, the standoff having a channel in which the motor lead is received. The standoff has at least one leg extending inward from the channel relative to the axis into contact with the pump housing. The leg spaces the channel of the standoff from the pump housing by a gap to enable well fluid flow between the motor lead and the pump housing.
In the embodiment shown, the standoff has four legs. More particularly, the standoff has a base and a pair of side walls extending outward from opposite edges of the base. The legs extend inward from the base.
In the embodiment shown, each sidewall extends outward relative to the axis from an opposite edge of the base. Each of the side walls has an outer edge spaced outward from the base. A plurality of lugs extend outward from the outer edge of each of the side walls. A distance from the base to an outer edge of each of the lugs is greater than a radial dimension of the motor lead.
A metallic band secures around the pump housing and over the channel of at least one of the standoffs, retaining the motor lead within the channel of the standoffs. In another one of the standoffs, the motor lead biases the leg against the pump housing. In the embodiment shown, the assembly has an upper standoff, an intermediate standoff and a lower standoff spaced axially apart from each other. Metallic bands clamp the upper and lower standoffs to the pump housing. The motor lead wedges the legs of the intermediate standoff against the housing and a metallic band is not required.
So that the manner in which the features, advantages and objects of the disclosure, as well as others which will become apparent, are attained and can be understood in more detail, more particular description of the disclosure briefly summarized above may be had by reference to the embodiment thereof which is illustrated in the appended drawings, which drawings form a part of this specification. It is to be noted, however, that the drawings illustrate only a preferred embodiment of the disclosure and is therefore not to be considered limiting of its scope as the disclosure may admit to other equally effective embodiments.
The methods and systems of the present disclosure will now be described more fully hereinafter with reference to the accompanying drawings in which embodiments are shown. The methods and systems of the present disclosure may be in many different forms and should not be construed as limited to the illustrated embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey its scope to those skilled in the art. Like numbers refer to like elements throughout.
It is to be further understood that the scope of the present disclosure is not limited to the exact details of construction, operation, exact materials, or embodiments shown and described, as modifications and equivalents will be apparent to one skilled in the art. In the drawings and specification, there have been disclosed illustrative embodiments and, although specific terms are employed, they are used in a generic and descriptive sense only and not for the purpose of limitation.
Referring to
A pump 25 connects to the upper end of seal section 21. Pump 25 has a well fluid intake 27 at the lower end of pump 25. Pump 25 is normally a rotary pump, such as a centrifugal or progressing cavity pump. Pump 25 could comprise several pumps connected in tandem. The connections between the modules of pump assembly 15 are normally bolted flanges, but they could be threaded connections.
A power cable 29 extends from a wellhead (not shown) alongside tubing 17 for supplying power to motor 19. Spaced apart production tubing bands or clamps 31 (only one shown) are crimped around production tubing 17 and power cable 29 to secure power cable 29 to production tubing 17. A motor lead 33 connects to a lower end of power cable 29 by a splice 35. Motor lead 33 extends alongside pump assembly 15 and has an electrical connector 37 on its lower end that secures to a receptacle at the upper end of motor 19. Splice 35 is illustrated at the upper end of pump 25, but it could be a considerable distance above pump 25. Motor lead 33 often has a length from 80 to 90 feet.
A plurality of standoffs 37 are spaced axially apart from each other along the length of pump 25 between pump 25 and motor lead 33. One standoff 37 is illustrated near the upper end of pump 25, one near the lower end, and a third in the middle. More or fewer standoffs 37 and different locations are feasible. As an example, standoffs 37 could be spaced apart from each other 2 to 10 feet. Also, if desired, standoffs 37 could be located between motor lead 33 and seal section 21. Each standoff 37 pushes motor lead 33 radially out from the exterior of pump 25, relative to axis 23, preventing physical contact between the exterior of pump 25 and motor lead 33. The space provided between motor lead 33 and the exterior of pump 25 facilitates the circulation of well fluid between motor lead 33 and pump 25 as the well fluid flows toward intake 27.
As shown in
In some wells, pump 25 can become hot enough to cause damage to motor lead 33. Typically, the heat occurs due to a lack of well fluid flowing through pump 25 because of gas locking or pump-off conditions. The excess heat in pump 25 may transfer to motor lead 33 because motor lead 33 lies alongside pump assembly 15 and in the prior art is in contact with the outer housing 51 of pump 25. The excess heat is particularly a problem with motor leads 33 having lead sheaths 45. Excess heat causes the lead sheaths 45 to soften and change shape, becoming thinner. If too thin, lead sheaths 45 may not be able to provide the desired protection to conductor insulation layers 43.
Referring also to
Side walls 57 extend outward from opposite side edge of base 55. Side walls 57 extend from base lower end 55a to base upper end 55b. Side walls 57 may be flat and orthogonal with base 55 as shown or curved to match the curvature of curved sides 49c of armor 49. Motor lead 33 fits closely within side walls 57 with armor sides 49c in proximity or touching side walls 57. Armor inward-facing side 49a is in flush contact with base 55.
One or more lugs 59 extend radially outward from the outer edges of each side wall 57. In this example, each standoff has two lugs 59 protruding from each side wall 57, one above the other. The radial distance from base 55 to the outer edge of each lug 59 is greater than the thickness of motor lead 33, measured from outer armor inward-facing side 49a to outer armor outward-facing side 49b. Lugs 59 protrude past outer armor outward-facing side 49b to prevent contact of motor lead 33 with casing 13 (
Standoff 37 has at least one leg 61 that extends inward from base 55 into contact with pump housing 51. In this example, there are four legs 61, each extending inward from base 55. Two of the legs 61 are in the same plane as one of the side walls 57, and the other two are in the same plane as the other side wall 57. The upper two legs 61 are at base upper end 55b and the lower two legs 61 are spaced above base lower end 55a by about the width of each leg 61. The upper two legs 61 are thus above the upper two lugs 59, and the lower two legs 61 are also above the lower two lugs 59. The number and positioning of lugs 59 and legs 61 can vary. The inward-facing edges of legs 61 may optionally be beveled to match the curvature of pump housing 51.
This arrangement allows standoffs 37 to be fabricated by stamping and bending from a single piece of sheet metal. However, standoffs 37 can be otherwise formed, such as by casting, molding, machining from bar stock, or 3D printing. Standoffs 37 could have other features to add strength and possibly enhanced cooling. For example, standoffs 37 could have a rippling of the surface to act like cooling fins to minimize motor lead 33 temperature. Each standoff 37 may be formed of a variety of materials, including those that are good thermal insulators.
As shown in
While pump assembly 15 is being prepared to be lowered into the well, workers will insert standoffs 37 between motor lead 33 and pump housing 51 at desired locations. Motor lead 33 is quite stiff, and pulling motor lead 33 away from pump housing 51 creates a radial inward bias force that wedges standoffs 37 in place. The compressive force on the rigid standoffs 37 retains standoffs 37 between motor lead 33 and pump housing 51. Standoff legs 61 need not be fastened to pump housing 51 by fasteners or adhesive. If desired, one or more standoff bands 63 may be used to strap some or all of the standoffs 37 in place.
Once standoffs 37 are secured, a flow channel 65 (
While the disclosure has been shown in only one of its forms, it should be apparent to those skilled in the art that it is susceptible to various changes.
This application claims priority to provisional application Ser. No. 62/908,686 filed Oct. 1, 2019.
Number | Date | Country | |
---|---|---|---|
62908686 | Oct 2019 | US |