1. Field of the Invention
The invention relates to motor operators, such as for power switches of electrical utilities, and particularly to such operators for underground switches as well as switches in other locations, with a drive and control system that allows remote adjustment of motor travel settings and other features facilitating their construction and operation.
2. Background Art
Power switches, for example, disconnect and load break switches for distribution systems, are typically used in three main types of locations: overhead on a utility pole, in an underground vault, and pad mounted substantially at surface level. (Reference to “pad” or “pad mounted” herein, unless the context clearly indicates the contrary, is to be understood as mounted on an above ground pad. It is of course the case that underground switches are sometimes mounted on a pad also.) The switches can also be of different types. Unenclosed air break switches are often used on pole top installations. Enclosed, but not sealed, air break switches are often used at pad mounted installations. Enclosed and sealed switches, such as with vacuum or gas (e.g., SF6) insulation, are often used in locations, such as underground vaults, where the confined and sometimes flooded space makes them preferred to air break switches.
Switches in underground locations, and also in some pad installations, have motor operators located near the switches (in contrast, for example, to poletop air break switches that are mechanically coupled to motor operators on or near the ground). At one time power switches could be operated only by direct access to the switch or its operator. More recently, the power switch art has applied technology for remote, automated, operation of a motor operator to close and open a power switch, (see, for example, Cleaveland/Price Bulletin DB-128C01 (of 2001), and also, U.S. Pat. No. 6,075,688, Jun. 13, 2000, herein incorporated by reference, for background information on automated motor operators). Sometimes, however, a motor operator will need some adjustment performed at the motor operator itself.
Extra danger to utility workers is encountered in tight locations such as underground vaults. For example, an enclosed switch may explode, due to heat buildup from arcing, and subject workers to injury.
Motor operators for underground switch locations generally require a sealed enclosure. For access to the interior of the enclosure, it has been necessary to have a port or panel of the enclosure that is removable and replaceable at the service location by a worker. In addition to the time needed to access the interior and to reseal the motor operator properly, perhaps dealing with up to thirty fasteners and a gasket, there is a risk the attempt to reseal is not successful and can lead to malfunction of the unit. The worker performing the field work is not equipped to test whether the seal is effective.
In the past, underground motor operators, and most others, required adjustment at the motor operator-power switch location to set the limits of travel of the motor in the motor operator which determine the travel limits of the power switch. For proper operation the motor drive unit (i.e., the motor itself and related gearing) needs to be able to move the power switch contacts to a definite closed position or a definite open position. Otherwise the function of the switch is impaired and, possibly, the motor of the drive or the mechanical coupling to the switch is damaged by being driven until the motor stalls.
For final adjustment during installation and occasional readjustment over the life of the equipment, in the case of an underground switch, a worker would have to enter the vault where the switch and motor operator are located. Typically, limit switches to control the limits of travel of the motor operating shaft would need setting upon initial installation of the operator and switch and possible adjusting from time to time after installation. The limit switches would have to be accessed by opening up the enclosure containing the motor resulting in the risks mentioned above in the case of underground units, including at least the risk to the integrity of the seal of the enclosure. While other locations, such as pad mounted at ground level, do not involve quite the same concerns for worker safety and motor operator integrity, the need for accessing limit switches is at least an undesirable maintenance requirement.
Motor operators have been used or proposed having a switch actuator with a position-sensing feature between an output shaft of the motor of the operator and a lever that produces power switch opening or closing, for example, as in U.S. Pat. No. 5,552,647, Sep. 3, 1996. Position sensing is shown by a potentiometer responsive to movement of a linear actuator to generate a signal indicating a position of a reference element on the actuator. The signal generated is communicated to control circuitry. The circuitry compares the signal to a standard to determine if the actuator travel is within limits determined by adjustable open-limit and closed-limit potentiometers. The arrangement is intended to improve on prior limit switch assemblies which fail to provide sufficient accuracy and repeatability and tend to be overly complicated and costly.
Such an actuator control is not one that avoids need for adjustment in the motor operator enclosure. The enclosure has an access hole specifically for adjustment of the open-limit potentiometer and the close-limit potentiometer.
Other motor operators have been disclosed that also have a sensed position signal. U.S. Pat. No. 6,025,657, Feb. 15, 2000, is directed to a motor operator for either power or manual operation without need for any decoupling or mode selection with a control system that receives signals indicating both the position of the drive output and the current drawn by the drive source. U.S. Pat. No. 6,215,263, Apr. 10, 2001, discloses a motor operator for overhead air break switches with a microcontroller subject to a variety of signals, including a position signal developed by a sensor that is a type of encoder. Some of the parameters relied on are temperature sensitive and require compensation. Some types of shaft position sensors, for example, including some encoders, depend on continuous power for a position signal to be reliably generated. Otherwise, after a power outage, the actual switch position would need to be observed and the motor travel limits reset. Such prior art has not particularly addressed and responded to a desire in the power switch art for avoiding needed travel limit adjustments in the enclosure of the motor, particularly important in underground sealed units, in a system not requiring multiple sensed signals and, also, easy to implement and operate.
Switches on motor operators are subject to manual operation under various circumstances. The power normally is off for a manual operation of the switch. Unless the motor is decoupled from the switch and only the switch is operated during a manual operation, there is a risk that the motor is caused to rotate at such high speed, i.e., an overspeed, that the motor is damaged (particularly its windings). Normally that risk is avoided by selecting a motor in the original manufacture that is heavy and strong enough, which of course incurs size and cost drawbacks. Similarly, any other component running off the motor shaft has to be rugged enough to withstand force that is transmitted by the shaft rotation during any operation.
This invention, in its various aspects, includes a number of features that each contribute to an innovative motor operator system, particularly for, but not limited to, use with underground switches. While individual features are combined in certain embodiments, it is not necessary to practice all the improvements together or to achieve all the characteristics of the preferred embodiments.
In the innovative system, in some embodiments, a first enclosure houses a motor with a gear train for driving a shaft coupled to a power switch, which can be adjacent to it in an underground vault, with also a position sensor such as a potentiometer, preferably a rotary potentiometer, in the first enclosure that runs off the motor shaft. The rotary potentiometer (or “pot”, for simplicity) develops a voltage signal indicating the rotary position of the motor shaft. The motor operator system has a second enclosure for power supply and control elements that, in the case of an underground switch, is much more accessible, such as being at surface level, than the enclosure in the underground vault. The second enclosure can provide various automation functions, such as for remote switch operation via a radio and RTU, and also provide for local operation at the second enclosure.
The position signal from the pot is communicated to a microcontroller in the second enclosure that has a nonvolatile memory for storing motor travel limits. A worker at the second enclosure can perform various functions at the second enclosure while merely observing or hearing the switch open or close, such as through a manhole without need to enter the vault where the switch and the first enclosure have been installed. Furthermore, even after a total power outage, including lack of any back-up battery power, when the pot is re-energized an accurate signal of the current switch position is given to the controller.
With the use of a switch panel in the second enclosure that receives the position signals, the worker can open or close the switch, set an existing position as a set point, and adjust the set points of travel that the motor moves between OPEN and CLOSE switch positions. Software running on the microcontroller controls all of these user functions. While numerous control features can be implemented to vary how the motor runs, in one embodiment simply using the position signal while selectively running the motor fully on for travel in the open or closed switch direction allows a worker to set or adjust travel limits accurately. The only needed signal from the motor to the controller is the shaft position signal.
Consequently, in embodiments as described above, the motor operator system is in two principal segments: one near the switch that includes the motor, gearing, and the pot and the other with power and control, including a position switch panel for travel settings, at a convenient location not near enough to the switch to raise worker safety concerns.
In some embodiments, such a switch panel is in a portable unit that a worker can remove from an underground switch vault for hand-held use above ground.
The motor-gearbox of the motor operator system can be of various structural elements to meet the mechanical requirements of the particular switch with which it is used. In one aspect, the invention opens up opportunities for a motor operator design engineer to select a motor for a particular application from a wider range of possible size and ruggedness. The ability to use a small, lightweight, motor is a definite plus for underground installations and can be desirable in others as well. Such a motor also can be desirable to achieve effective performance more economically than a bigger, stronger motor.
According to one aspect of the present invention, the risk of damage to the motor as a result of an overspeed condition during a manual operation is avoided by an overspeed limiting circuit (or overspeed brake circuit) that is effective even when the motor is de-energized.
The overspeed limiting circuit includes a bidirectional voltage suppressor (performing speed limiting in both directions of shaft rotation) connected across the motor, specifically its rotating armature, that allows free motor movement until the motor turns at a speed great enough to generate a voltage across the armature that reaches a threshold at which the suppressor conducts current and clamps the voltage. When this occurs, the motor braking force is sufficient to discourage further speed increase from manual operation thereby avoiding damage to the motor.
The overspeed limiting circuit is designed to operate at a threshold or clamping voltage above the normal operating voltage so it does not interfere with operation under power. The clamping voltage is chosen, however, to be at a level below that resulting from an overspeed condition that would damage the motor.
The overspeed limiting circuit can be provided for different types of motors including, for example, permanent magnet motors and reversible DC shunt wound motors.
Another aspect of the invention allows a design engineer to select a rotary potentiometer, for sensing motor shaft position, that is small, lightweight, and economical because it is protected against overtensioning from motor forces by a slip clutch. The slip clutch can be of various constructions including those without electromagnetic field assemblies or the like. In one form, a slip clutch, located directly between the shaft from the motor and the rotary element of the pot, comprises a number of o-rings that allow motor shaft rotation to be transferred to the rotary potentiometer while limiting tension on the potentiometer. Long life and high accuracy can be obtained even with a relatively light and inexpensive pot, with the slip clutch adding little cost. Further, the design of the o-ring slip clutch allows easy variation, in terms of the number and size of the o-rings, to facilitate adapting the basic design to a particular motor-potentiometer combination.
Another aspect of the invention is that the design of a motor operator system including the preferred features for underground switches is also readily adapted to other types of installations. As mentioned in the background, overhead, underground, and pad-mounted switches are widely used in utility systems. The industry addresses these applications differently because size limits vary resulting in different switches having different motor operator speed and torque requirements. It happens that a motor operator system as described that includes features, including size, speed and torque, making it quite suitable for underground switches is also frequently equally suitable for pad-mounted switches. A pad-mounted installation allows an additional degree of flexibility in the location of elements of the system. For example, a single pad-mounted enclosure may house the motor-gear train and pot (which can be assembled and enclosed substantially as in the case of the underground units but without the same need for sealing) and, also, the power and control elements, although two separate enclosures as described for the underground switch can be alternatively used. Even with the better worker access at a pad location the ability to set travel limits as indicated with a sensed position signal from the pot is advantageous. Hence, in its broader aspects features of the invention can be applied to motor operators generally, not limited to a specific location.
The motor-gearbox of the system is, in some forms, constructed in a way to achieve substantially permanent sealing making it particularly well suited for underground use. One embodiment that facilitates the assembly includes a continuous tube-like wall structure, which may be totally seamless (e.g., extruded aluminum) or have a welded seam (e.g., rolled stainless steel). The wall structure can be of materials with an overall cross-sectional configuration, e.g., substantially square, that contributes to mechanical stability in operation of the unit. The ends of the wall structure are closed by thicker end caps on which the running parts are supported. For example, the motor, gearing and pot can all be supported on one end cap, the one to be located away from the power switch, and the output drive shaft to the switch can be supported on the other end cap which is fastened to the switch enclosure. The first end cap also can have a part of the output shaft extending through for manual operation of the motor. Both shaft extensions can be sealed, such as by o-rings.
For such a construction, the assembly can be performed by a method that includes forming a subassembly of the motor, gearing, pot, and the output shaft, locating the output shaft in the first end cap, fastening the motor itself to the first end cap (the gearing and pot not requiring separate fastening), and placing the tubular wall structure over the subassembly with the edges of one end fit in a routing near the periphery of the inner surface of the first end cap. The wall structure has a cord grip and aperture for conductors (e.g., to the motor and the pot). When the wall is positioned around the elements to be wired but before assembling the second end cap, the necessary electrical connections are made. Then, the second end cap, which also has a routing mating with the end edges of the wall structure, is pressed onto the wall. Further, fasteners extending from one end cap to the other through a portion of each that is outside the wall structure unite everything into a stable assembly. The exterior surfaces where the end caps meet the wall structure can be further sealed by external application of a sealant.
These and other aspects of the present invention will be additionally illustrated and described in the accompanying drawings and the following text.
Referring to
The power switch 10 includes an enclosure 14 containing switch contacts 15 and 16 at least one of which, 15, is movable relative to the other, 16. Switch 10 is, for example, a vacuum or gas insulated switch of prior art construction. Segments 17a and 17b of one phase of a power line are connected to the respective contacts 15 and 16. (
In enclosure 22, there is shown a motor 30 with an output shaft 32. A gear unit or gear train 34 and a rotary potentiometer 36 (sometimes referred to herein simply as the pot) are coupled with, and run off of, the shaft 32. Through shaft 32 and gear unit 34, the motor 30 drives the motor-gearbox output shaft 38 that goes to switch mechanism 18.
To help keep the terminology used in this description clear, the following is intended unless the context shows a different intent: The expression “motor-gearbox” refers to the whole of enclosure or box 22. The “motor” in the enclosure 22, likely to be a procured item for use by the maker of the system 20, may (or may not) happen to have a gear or gears within the same enclosure 30 with an actual electric motor. In the case of an example motor 30 in the more specific embodiment of
A more specific example of the motor-gearbox elements will be described later. For the present, it is seen that the system 20 has the elements of enclosure 22 next to or near the switch 10 location, underground in this example. The motor 30 and gear unit 34 are whatever meets the speed, torque and other mechanical requirements of the switch 10. Both the switch enclosure 14 and the operator enclosure 22 are preferably hermetically sealed to allow operation even under flooded conditions. Because no adjustments in box 22 are contemplated after initial installation, it is unnecessary to have any access ports for a worker to set or reset anything.
The pot 36 is shown on motor shaft 32 in this example because that is a more direct and convenient location than is normally available on shaft 38. It is also likely to produce more accurate readings. It is arranged with the shaft 32 to develop a voltage varying according to the motor shaft position, which allows the position of shaft 38 and the closed or open position of the switch 10 to be determined, as will be described. A signal line 37 schematically represents an electrical connection from pot 36 to enclosure 24 carrying a switch position signal.
The second enclosure 24 of system 20 at the surface includes, in a first portion 40, the power supply for the motor 30, which depends on the motor requirements, e.g., AC line power, DC power developed from AC, DC battery power, or some combination. Single line 41 schematically represents an electrical power connection from the supply 40 to the motor 30. Enclosure 24 normally does not need sealing as is desired for box 22 in an underground location. (If the enclosure 24 is also underground, then sealing is of course desirable.)
The second enclosure 24 also includes a control portion 42 that can have electronic circuitry such as that similar to the existing automated motor operators described in the above mentioned Bulletin, for control of power to the motor 30, through power unit 40. As in the units of the Bulletin and other such equipment, the control unit 42 may be arranged for both local and remote operation, the latter through a radio and a Remote Terminal Unit (RTU). The control unit 42 also is electrically connected with a position switch panel 44 in enclosure 24 by circuitry represented by a single line 45. Panel 44 may sometimes be referred to as a “travel control panel”. (Contents of an enclosure such as 24 may be referred to herein collectively as a “control and power supply assembly”.)
One of the novel aspects of the arrangement of
More description of examples of the workings of control 42 and position switch panel 44 will be found below.
In the drawing figures, examples of elements of similar character will normally have reference numerals with the same last two digits.
Motor operator system 120 could comprise two separate enclosures, like 22 and 24 in
The apparatus depicted in
A more specific example of a motor-gearbox, such as box 22 of
For underground units all the walls and the end caps of enclosure 22 are, for example, anodized aluminum or stainless steel with sealing provided by, e.g., silicone rubber adhesive. For pad units plain aluminum may be used, without sealing, as well as other materials.
A liquid-tight cord grip 26 and a conduit 27 are provided for electrical conductors, which include conductors represented by lines 37 and 41 in
The shaft 38 has o-ring seals 28 through end caps 22e and 22f. Only the seals 28 in the end cap 22f are shown in
The overall size of an enclosure 22 such as shown in
When applied in a pad-mounted unit 124 such as in
The end caps 22e and 22f are preferably thicker, e.g., about ¾ in., for good support of the motor unit 30 on cap 22e and running support of the shaft 38 through seals 28 on each of the caps 22e and 22f. Each end cap 22e and 22f has a routing 23 (
In the example shown, a subassembly is made of the end cap 22e, motor 30, gearing 34, pot 36, and shaft 38. That subassembly has the wall tube of the unified walls 22a, 22b, 22c, and 22d joined by its left end being snugly fit into the routing 23 of the end cap 22e with the cord grip 26 and conduit 27 on the wall 22b, and the wiring to the motor 30 and the pot 36 completed, prior to putting the right end cap 22f in place by fitting its routing 23 with the right end of the tube wall.
Both end caps, of which the end cap 22e is seen in
The structure 22 of
Essentially the same form and assembly steps can be used for pad-mounted units, usually without any needed joint sealing. Thus the commonality of parts simplifies and economizes the manufacture of the motor-gearboxes for either sealed or unsealed types of installations.
In addition,
Such a desiccant bottle 39 helps insure long life for the motor 30, pot 36, and other working elements in the enclosure, especially for underground units. For pad-mounted equipment, where the enclosure is not sealed, a nearby heater (discussed in connection with
The location 39a of the desiccant bottle 39 in the end cap 22f also is where a small opening through the end cap occurs. For hermetically sealed units, once the wall structure and end caps are assembled, and after the exterior of joints is sealed, the enclosure 22 is pressure tested (e.g., 12 psi for 5 min.) through that opening to ensure there are no leaks. After a satisfactory test, ambient air is allowed in and the bottle is then filled with the desiccant. Then a plug is sealed into the smaller opening that leads into the desiccant bottle 39 in location 39a.
The substantially square configuration for the unitary continuous wall structure of walls 22a, 22b, 22c, and 22d is favorable for mechanical stability in operation of the motor-gearbox. Other polygonal shapes, e.g., hexagonal, are also suitable. While the enclosure may have rounded corners, possibly even being circular in cross-section, shapes such as that illustrated are relatively easy to obtain of standard structural tubing with extruded aluminum and give good results with good economy. Stainless steel formed and welded is also adequate although more expensive. Whatever the shape of the walls is, that dictates the shape of the mating routing on the end caps.
The pot 36 is mounted on a floating guide plate 54 by a nut 36b on a threaded part 36c surrounding the shaft 36a. The pot shaft 36a passes through a hole (not shown) in plate 54 that allows free rotation. The guide plate 54 is joined with another plate 55, sometimes called an anti-separation plate, that has apertures 55a and 55b for respective shafts 32 and 38. The plate 55 is not secured to any wall of the enclosure. Its apertures 55a and 55b allow free running of the shafts 32 and 38 without requiring lubrication or bearings but the plate 55 contributes to maintaining accurate alignment of the parts which otherwise could become distorted due to torsional effects. The floating guide plate 54, sometimes called a pot plate, is fastened to the other plate 55 by fasteners 56 and 57, such as bolted standoff 57 from plate 55 with nuts 56, securing the pot plate. The nuts 56 allow an air space so guide plate 54 is not solidly joined with the other plate 55. In this way, the shaft 32 is prevented from applying cantilevered forces that could cause undue wear or cause a change in the force to the pot resulting from the slip clutch 50.
One advantage of an assembly as shown in
Circumstances may exist in which the motor 230 is subject to possible damage by an overspeed condition that is not affected by the dynamic brake 242b. For example, the motor 230 may be coupled to a manual operator of a power switch, such as via output shaft 238 from motor-gearbox 222. If motor 230 is turned without any restraint during manual operation, speeds destructive to the motor (e.g., by centrifugal force on the motor windings) can be reached absent a very rugged motor structure.
The motor 230 may be chosen as previously described for motor 30 and not be rugged enough to avoid overspeed dangers. To protect the motor 230 an overspeed brake 270 is connected across the armature of the motor 230. The overspeed brake 270 is a circuit that allows unrestrained motion of the shaft 238 only up to a threshold speed and then automatically applies braking action. The brake 270 is bi-directional, that is, it functions in both directions of shaft rotation. Referring to
The overspeed brake 270 comprises, for example, a bidirectional over-voltage suppressor such as a bi-directional threshold breakdown device, metal oxide varistor, or a MOSFET type of device. The brake 270 is to clamp the voltage across the motor armature at a threshold below a voltage resulting from an overspeed that could harm the motor, but above the normal operating voltage. With an overspeed brake 270 the system designer has more freedom in the choice of the motor 230 or 30.
A more specific example for the overspeed brake 270 is shown in
In
In
The end view of motor gear box 122 in
In
In addition, a SET TRAVEL portion of the panel 544 has a first push button switch 548a (e.g., with a red top), a second pushbutton switch 548b (e.g., with a green top), and a third pushbutton switch 549 (e.g., with a black top). By the dashed lines from each of switches 548a and 548b to the OPEN-CLOSE switch 547 and to switch 549 (referred to as the SET button), along with the displayed legends “ADJ CLOSE”, “ADJ OPEN”, “SET CLOSE”, and “SET OPEN”, a worker can readily see which switches are used together for travel limit settings and adjustments. Although not so labeled on
The switches 546, 547, 548a, 548b, and 549, and lights 547a and 547b, are all interconnected behind the front of panel 544 with a microcontroller (not shown) that is further interconnected with the control module 542 of the units of
To perform functions at the panel 544, in accordance with this example, a worker first needs to set the REMOTE/LOCAL switch 546 to LOCAL. Then various options are available. Operating just the switch 547 to OPEN or CLOSE will cause the motor 30 (as well as the motor-gearbox output shaft 38) to move from its current position to the corresponding position indicated on the toggle switch, according to the position settings in the memory of the microcontroller.
When a switch 10 and a motor operator system 20 or 120 are first installed and set up for operation, a suitable set up procedure can include:
More specifically with respect to the particular panel 544, in order to set a current location of the motor as the OPEN or CLOSE position, the worker holds down the SET pushbutton 549 while also pressing the corresponding OPEN push button 548b or CLOSE push button 548a (briefly, e.g., 2–3 secs.). In either case, the corresponding light 547a or 547b will blink showing that the point has been set, i.e., recorded in the memory of the microcontroller of the panel 544 and the pushbuttons are released. Subsequent operation, either remote or local, will occur according to that position until there is a further adjustment.
If the worker wants to adjust a present OPEN or CLOSE set point, either the OPEN button 548b or the CLOSE button 548a is held down while moving the switch 547 to the OPEN or CLOSE direction as the case may be, without operating the SET pushbutton 549.
The panel 544, in this example, is programmed to effect a specific increment of motor motion (i.e., motor-gearbox output shaft) on each such operation. For example, the motor output shaft 38 of unit 22 will move 3 degrees toward a more open or more closed position. If the worker is then satisfied that the position reached is what is desired (e.g., by hearing or otherwise observing the switch 10 has opened or closed), and does not perform another operation, then the position reached will become the set position. Otherwise the worker continues with one or more other ADJ OPEN or ADJ CLOSE operations. If the worker finds the predetermined increment is too much, a reverse operation is performed to back up. If the system hits a mechanical stop in either direction and is unable to complete the increment of travel, the worker waits a few seconds while the microcontroller times out and the limit reverts to the last setting. In all these instances, the software running on the microcontroller produces the desired functions, in response to the worker's operation of the position switches, while taking advantage of the precise position signal produced by the potentiometer (e.g., pot 36) and recorded in the microcontroller.
The example systems as described contemplate that all the operations are simply performed by motor operations in either of the two directions with full torque and with only the benefit of the position signal on line 37, as far as electrical readings from the motor-gearbox 22 or 122 are concerned. This has been found to be satisfactory for numerous underground and pad mounted distribution switches 10 or 110. However, a system incorporating additional functions in the programming of the microcontroller of panel 544, with or without possible additional sensed signals, can be readily devised and could utilize others of the above-described features of the example system.
The description of the local operations at the switch panel 544 of an enclosure 24 or 124 is just an example of a highly useful way to perform needed motor travel adjustments outside the motor enclosure 22 or 122. Additionally, a position signal from a pot 36 or other position sensor can be made use of at substantially any location the signal can be communicated to (e.g., a central control station by radio) and which has the ability to discern switch position (e.g., by communication to it of visual or audible signals confirming power switch trips and closings).
In this example, the controller 624 is one that has the necessary elements of the box 24 but without a power supply (e.g., a battery) within the controller 624. Instead the controller 624 has a power cord 692 ending with two attachments (e.g., alligator clips) 692a and 692b for attaching the power cord 692 to a power source, typically a battery in a truck that the worker drove to the vault location, for temporary use to perform functions with the controller.
The controller 624 has a position switch panel 644 like or similar to the panel 544 for setting and adjusting travel limits of the motor in box 22. Normally, panel 644 is configured for just local operation. A worker opens the manhole 602, reaches in, takes controller 624 off the hook 606 and then pulls it out. The cord 691 is long enough to allow the controller 624 to be carried to a convenient location and the cord 692 is long enough so attachment of its clips 692a and 692b can be easily performed. (When not in use, cord 692 will normally just hang down from controller 624 in the vault 600.) With that arrangement, and the worker's interaction with the panel 644, the previously described functions can be performed.
The arrangement of
The power and control box 724 is preferably sealed like the motor-gearbox 22 and contains, for example, elements like the box 24 of
The portable unit 724a can normally rest on a hook 606 in the vault 600. A worker can reach in and withdraw it through the manhole 602 for use above ground level 12 substantially in the manner of the unit 624 of
A variation of the arrangement of
The position switch panel 544 (or panel 44 of
Additional elements of a motor operator system with one or more features of the invention would normally include one or more brackets for physical support of the motor-gearbox with the switch so the unit stays in position despite the forces on it during switch operations. Also, a mechanical coupler-decoupler, indicated generally as element 19 in
In its broader aspects, use of a potentiometer for position signals may take other forms from that of a rotary pot and slip clutch on a motor shaft as shown here. The arrangement shown has simplicity and effectiveness. Other potentiometers are also suitable for achieving a motor position signal that is reliably renewed after a power outage. Shaft position encoders that are hall effect devices or optical sensors are not able to do so. That is also the case with other 2-phase encoders, sometimes referred to as relative position sensors, in contrast to absolute position sensors which in addition to a pot, include absolute encoders (mechanical or optical) and a “Selsyn” resolver, for example.
It is advantageous to have a position sensor that is of the type characterized by an ability to resume generating an accurate position signal upon restoration of power following a loss of power to the motor drive. A loss of power to the motor drive, in this context, means a total loss of power; both the AC line power and any backup (e.g., battery) power are out. The ability to resume generating an accurate position signal means the position signal from the position sensor indicates the actual position of the drive, regardless of any drive movement during the time the power is off. Absent that ability, a motor operator system faces a problem because, even with a nonvolatile memory in the controller storing predetermined travel limits, the motor operator may have moved during the power outage, such as by an actual, or a merely attempted, manual operation. Such movement makes the output from a relative position encoder, after power is restored, not accurate and not useful for the controller, so a repeat of a procedure like that used when the motor operator is first installed with the switch may be necessary. In the case of position sensors that have the described ability, e.g., potentiometers and absolute encoders, a signal is generated immediately upon power being restored that is accurate, even if such movement has occurred.
The embodiments disclosed are merely some examples of the various ways in which the invention can be practiced.
Number | Name | Date | Kind |
---|---|---|---|
3046864 | Batterman et al. | Jul 1962 | A |
3582741 | Arnold et al. | Jun 1971 | A |
3925722 | Fohrhaltz et al. | Dec 1975 | A |
4179646 | Russell | Dec 1979 | A |
4357505 | Bridges | Nov 1982 | A |
4691148 | Nicholls et al. | Sep 1987 | A |
4804809 | Thompson, Jr. et al. | Feb 1989 | A |
4914368 | Orton | Apr 1990 | A |
5025171 | Fanta et al. | Jun 1991 | A |
5321980 | Hering et al. | Jun 1994 | A |
5552647 | Tinkham | Sep 1996 | A |
5804930 | Panto | Sep 1998 | A |
5856642 | Sanders | Jan 1999 | A |
6025657 | Lo et al. | Feb 2000 | A |
6075688 | Willard et al. | Jun 2000 | A |
6215263 | Berkowitz et al. | Apr 2001 | B1 |
6378222 | Enzinna | Apr 2002 | B1 |
6456025 | Berkowitz et al. | Sep 2002 | B1 |