Hitherto, a motor rotor with a cylindrical magnet disposed around a shaft portion is known, for example Japanese Unexamined Patent Publication No. 2016-208724, Japanese Unexamined Patent Publication No. 2000-014062, Japanese Unexamined Patent Publication No. 2005-198447 etc. As a method of manufacturing this kind of motor rotor, a method of fixing the cylindrical magnet to the shaft portion by adhering is known.
A motor rotor according to an aspect of the present disclosure includes a shaft portion; a cylindrical magnet disposed around the shaft portion; and a resin portion formed by charging a gap between the shaft portion and the magnet with a resin. The shaft portion is located to face an inner peripheral surface of an end portion of the magnet in an axial direction. The shaft portion includes a small diameter portion formed to have a diameter smaller than a diameter of a portion facing an inner peripheral surface of a center portion of the magnet in the axial direction.
As described in for example Japanese Unexamined Patent Publication No. 2016-208724 etc., according to the method of fixing the cylindrical magnet to the shaft portion by adhering, the shaft portion and the cylindrical magnet are aligned relatively satisfactorily. However, in order to obtain a good adhesion state between the shaft portion and the cylindrical magnet, it requires a troublesome grinding work that the inner peripheral surface of the cylindrical magnet is subjected to grinding to adjust the dimension first, and then the cylindrical magnet is adhered to the shaft portion. The present disclosure describes a motor rotor configured to align the shaft portion and the magnet. The structure of the motor rotor for aligning described herein is not more complicated than conventional motor rotors and the method of aligning described herein may comprise fewer alignment steps than conventional motor rotors.
A motor rotor according to an aspect of the present disclosure includes a shaft portion; a cylindrical magnet disposed around the shaft portion; and a resin portion formed by charging a gap between the shaft portion and the magnet with a resin, wherein the shaft portion is located to face an inner peripheral surface of an end portion of the magnet in an axial direction and includes a small diameter portion formed to have a diameter smaller than that of a portion facing an inner peripheral surface of a center portion of the magnet in the axial direction.
An outer peripheral surface of the shaft portion may be provided with a groove extending in a direction including a circumferential component. The small diameter portion may be a tapered portion that is formed to gradually decrease in diameter as the small diameter portion tapers away from the center portion of the magnet in the axial direction. The small diameter portion may be formed with a small diameter due to a step between the small diameter portion and a portion facing the center portion of the magnet.
A motor rotor according to an example will be described with reference to the drawings.
The turbocharger 1 is applied to an internal combustion engine of a vehicle or the like. As illustrated in
The turbine impeller 6 is provided at one end of the rotation shaft 14 and the compressor impeller 7 is provided at the other end of the rotation shaft 14. A bearing housing 13 is provided between the turbine housing 4 and the compressor housing 5. The rotation shaft 14 is rotatably supported by the bearing housing 13 through a bearing 15 and the rotation shaft 14, the turbine impeller 6, and the compressor impeller 7 rotate around the rotation axis H as an integral rotation body 12.
The turbine housing 4 is provided with an exhaust gas inlet (not illustrated) and an exhaust gas outlet 10. An exhaust gas discharged from an internal combustion engine (not illustrated) flows into the turbine housing 4 through the exhaust gas inlet. Then, the exhaust gas flows into the turbine impeller 6 through the scroll flow passage 16 to rotate the turbine impeller 6. Then, the exhaust gas flows to the outside of the turbine housing 4 through the exhaust gas outlet 10.
The compressor housing 5 is provided with a suction port 9 and a discharge port (not illustrated). When the turbine impeller 6 rotates as described above, the compressor impeller 7 rotates through the rotation shaft 14. The rotating compressor impeller 7 sucks external air through the suction port 9. This air passes through the compressor impeller 7 and the scroll flow passage 17 to be compressed and is discharged from the discharge port. The compressed air discharged from the discharge port is supplied to the above-described internal combustion engine.
Further, the turbocharger 1 includes an electric motor 21. When the torque of the rotation shaft 14 is insufficient, for example at the time of accelerating the vehicle, the electric motor 21 applies a torque to the rotation shaft 14 to make up for the shortage. The electric motor 21 is, for example, a brushless DC electric motor. The electric motor 21 includes a motor rotor 25 which is a rotor and a motor stator 27 which is a stator. A battery of the vehicle can be used as a drive source of the electric motor 21. Further, the electric motor 21 may regeneratively generate electricity by the rotational energy of the rotation body 12 at the time of decelerating the vehicle. The electric motor 21 has a characteristic corresponding to the high-speed rotation (for example, 100,000 to 200,000 rpm) of the rotation shaft 14.
The motor rotor 25 is disposed between the bearing 15 and the compressor impeller 7 in the axial direction. The motor rotor 25 is fixed to the rotation shaft 14 and is rotatable together with the rotation shaft 14. The motor stator 27 is accommodated in the bearing housing 13 and is disposed to surround the motor rotor 25 in the circumferential direction. The motor stator 27 includes a plurality of coils and iron cores (not illustrated). When a current is supplied to the coil to generate a magnetic field by the motor stator 27, a circumferential force is applied to a permanent magnet 37 of the motor rotor 25 due to the magnetic field. As a result, a torque is applied to the rotation shaft 14.
Next, the motor rotor 25 will be described with reference to
The inner sleeve 31 includes a large diameter portion 33. The large diameter portion 33 is provided with a slightly large diameter at the center portion of the inner sleeve 31 in the axial direction. The permanent magnet 37 is formed in a cylindrical shape and is installed around the large diameter portion 33. The protective layer 43 is a cylindrical member and is sometimes called an “armor ring” or the like. The protective layer 43 is formed in a cylindrical shape and is installed around the permanent magnet 37. The protective layer 43 prevents debris from scattering in the radial direction when the permanent magnet 37 is damaged. Further, the protective layer 43 needs to have a certain degree of rigidity in order to suppress the strain of the permanent magnet 37 and reduce the possibility of damage to the permanent magnet 37.
A slight gap exists between the inner sleeve 31 (shaft portion) and the permanent magnet 37. The gap is charged with a resin material of the resin portion 50. For example, the resin portion 50 is formed by injection-molding or transfer-molding. The inner sleeve 31 and the permanent magnet 37 are integrally connected through the resin portion 50. Then, the torque can be transmitted between the inner sleeve 31 and the permanent magnet 37 by the resin portion 50. The torque transmitted in the turbocharger 1 is, for example, about 0.5 Nm.
Additionally, the permanent magnet 37 and the protective layer 43 may be connected to each other by charging a gap between the permanent magnet 37 and the protective layer 43 with a resin. In addition, the end rings 39 and 41 may be also connected to the inner sleeve 31 and the protective layer 43 through the charged resin portion.
As described above, the motor rotor 25 is an integral assembly. The rotation shaft 14 is inserted through the hollow portion of the inner sleeve 31 of the motor rotor 25 and the motor rotor 25 and the compressor impeller 7 are fastened to the rotation shaft 14 together by a nut 18 (see
As the material of the inner sleeve 31, for example, a steel material such as SCM435H can be adopted. As the material of the permanent magnet 37, for example, a neodymium magnet (Nd—Fe—B), a samarium cobalt magnet, or the like can be adopted. As the material of the protective layer 43, a metal material or a resin material can be adopted. As the metal material, a non-magnetic metal such as titanium (for example, Ti-6Al-4V) can be adopted. Further, as the resin material, carbon fiber reinforced plastic (CFRP) etc. can be adopted. As the materials of the end rings 39 and 41, for example, a non-magnetic metal such as SUS, a thermosetting resin, a thermoplastic resin, or the like can be adopted.
As the material of the resin portion 50, a thermosetting resin, a thermoplastic resin, or the like can be adopted. More specifically, phenol resin or epoxy resin which is a thermosetting resin or liquid crystal polymer (LCP) which is a thermoplastic resin can be adopted as the material of the resin portion 50. Additionally, according to the tests conducted by the present inventors, LCP is may be adopted as a material for the resin portion 50 in that it has higher fluidity during injection-molding than phenol resin. Further, LCP may be adopted as a material for the resin portion 50 in that it is relatively easy to obtain as compared with phenol resin. On the other hand, the phenol resin may be adopted as the material of the resin portion 50 in that it is superior in heat resistance, rigidity, and environmental resistance as compared with LCP. Further, the epoxy resin may be adopted as the material of the resin portion 50 because the material itself has adhesiveness.
As illustrated in
In the example of
Further, as illustrated in
Here, when the molten resin 71 is introduced into the gap 69, there is concern that the flow state of the molten resin 71 may become non-uniform in the circumferential direction. Then, as illustrated in
In contrast, as illustrated in
As described above, according to the structure of the motor rotor 25 of this example, the inner sleeve 31 and the permanent magnet 37 are aligned according to a structure in which the small diameter portion 61 is provided in the inner sleeve 31.
Further, the groove 65 formed in the outer peripheral surface 31a of the inner sleeve 31 extends in the direction including the circumferential component. Accordingly, the groove 65 guides the flow of the molten resin 71 in the direction including the circumferential component. Thus, the groove 65 promotes the flow of the molten resin 71 in the circumferential direction inside the gap 69. Thus, the molten resin 71 is likely to uniformly spread in the circumferential direction in the gap 69 also by the existence of the groove 65. Further, as illustrated in
Further, since the resin portion 50 is formed to enter the groove 65, the adhesiveness between the resin portion 50 and the inner sleeve 31 is increased and the adhesiveness between the inner sleeve 31 and the permanent magnet 37 is also increased. Since the groove 65 extends in the direction including the circumferential component, the adhesiveness in the axial direction is increased. As a result, the misalignment of the permanent magnet 37 with respect to the inner sleeve 31 in the axial direction is suppressed. Further, since the groove 65 includes the knurled groove 66b, the misalignment of the permanent magnet 37 with respect to the inner sleeve 31 in the circumferential direction is also suppressed.
The present disclosure can be carried out in various forms having various modifications and improvements based on the knowledge of those skilled in the art, including the above-described examples. Further, it is also possible to construct a modified example by utilizing the technical matters described in the above-described examples. The configurations of the respective examples may be combined and used as appropriate.
In the example, a connection between the inner sleeve 31 having a hollow structure and the permanent magnet 37 has been described, but the above-described structure can be applied, for example, even when the permanent magnet 37 is connected to the shaft portion having a solid structure.
Number | Date | Country | Kind |
---|---|---|---|
JP2019-074828 | Apr 2019 | JP | national |
This application is a continuation application of PCT Application No. PCT/JP2020/013110, filed Mar. 24, 2020, the entire contents of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2488729 | Kooyman | Nov 1949 | A |
20070052310 | Sakai et al. | Mar 2007 | A1 |
20070065314 | Nagata et al. | Mar 2007 | A1 |
20070065315 | Nagata et al. | Mar 2007 | A1 |
20070086905 | Nagata et al. | Apr 2007 | A1 |
20080084125 | Ohkawa et al. | Apr 2008 | A1 |
20110273037 | Ota et al. | Nov 2011 | A1 |
20130076199 | Yamagishi | Mar 2013 | A1 |
20150118044 | Hippen | Apr 2015 | A1 |
Number | Date | Country |
---|---|---|
S61-065839 | May 1986 | JP |
H2-094444 | Jul 1990 | JP |
H10-014147 | Jan 1998 | JP |
2000-014062 | Jan 2000 | JP |
2002-010545 | Jan 2002 | JP |
2005-198447 | Jul 2005 | JP |
2006-197713 | Jul 2006 | JP |
2007-159191 | Jun 2007 | JP |
2011-239546 | Nov 2011 | JP |
2013-074736 | Apr 2013 | JP |
2016-208724 | Dec 2016 | JP |
2018-050461 | Mar 2018 | JP |
2012089470 | Jul 2012 | WO |
Entry |
---|
International Preliminary Report on Patentability with Written Opinion dated Oct. 21, 2021 for PCT/JP2020/013110. |
International Search Report dated Jun. 30, 2020 for PCT/JP2020/013110. |
Number | Date | Country | |
---|---|---|---|
20220021255 A1 | Jan 2022 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/JP2020/013110 | Mar 2020 | US |
Child | 17491560 | US |