This is a U.S. national phase under 35 U.S.C. 371 of International Patent Application No. PCT/US2015/013187, titled “Motor Shaft Transmission Interference Apparatus” and filed Jan. 28, 2015, the entirety of which is incorporated herein by reference.
The present disclosure relates generally to an assembly for a motor shaft transmission and, more particularly (although not necessarily exclusively), to a drive shaft catch for a downhole drilling motor assembly.
Drilling motors utilize fluid energy converted to mechanical energy to provide shaft rotation to a drill string or drill bit. Because the drilling motor is a highly loaded section of a drilling tool, it is prone to critical damage during motor transmission failure. Failure of the motor transmission may result in critical damage to the motor transmission assembly, including the separation of components from the transmission assembly. Where such separation occurs, these components may be lost downhole. The lost components dropped downhole can prevent further progression in drilling and can cause significant delays.
A procedure commonly known as “fishing” is sometimes used to retrieve the lost components, but this procedure is costly and time-consuming, and in certain instances may be ineffective. In some instances, the loss of components downhole can result in abandonment of a drilling project.
Certain aspects and examples of the present disclosure relate to a downhole motor assembly having an interference apparatus. The interference apparatus may include split-ring shells received in a groove of an intermediate sleeve and coupled to the intermediate sleeve by a retaining device. The split-ring shells are separate and independent of the bearing housing and the motor shaft. A spacer sleeve may be positioned between the interference apparatus and the bearing housing.
The split-ring shells of the interference apparatus may be U-shaped shells and may form a ring-shape when joined together. Part of the split-ring shells may extend radially from the intermediate sleeve. Should a break occur, the split-ring shells may catch on a stationary sleeve and prevent the loss of components downhole.
The terms “inner,” “outer,” “internal,” “external,” and “between,” as used in the present disclosure may refer to a radial orientation toward or away from the center of the motor shaft transmission assembly. The terms “uphole” and “downhole,” as used in the present disclosure may refer to an axial orientation toward or away from the surface.
Various aspects of the present disclosure may be implemented in various drilling systems.
The drill string 11 may include at least a drill pipe 15 and a bottom hole assembly 16. The bottom hole assembly 16 may be made up of various components, such as a downhole motor assembly 17 and the drill bit 14.
Though placement of the assemblies disclosed herein may vary without departing from the scope of the present subject matter, the assemblies of the present disclosure may be included in the lower end of the downhole motor assembly 17 and near the drill bit 14. For example, the motor shaft transmission assembly 18 depicted in
During operation of the drilling system, dynamic loads may be placed on a drill motor by the action of the drill bit 14 and by drill string 11 vibrations. In certain instances, the dynamic loads may cause the drill motor to fail and components of the motor shaft transmission assembly 18 to separate. The motor shaft transmission assembly 18 can include an interference apparatus to prevent the loss of components.
In
In
The split-ring shells 27 may be mounted to the intermediate sleeve 24 by the band 28. When mounted to the intermediate sleeve 24, the split-ring shells 27 may be joined together around the intermediate sleeve such that the split-ring shells 27 form a ring shape that encircles the intermediate sleeve 24. The outer diameter of the split-ring shells 27 may be greater than the outer diameter of the intermediate sleeve 24 near the mounting point of the split-ring shells 27 such that the outer diameter of the split-ring shells 27 radially extends beyond the outer diameter of the intermediate sleeve 24 and an inner diameter of the stationary sleeve 25 when the split-ring shells 27 are mounted in the groove 34 of the intermediate sleeve 24.
The band 28 of the interference apparatus may be coupled to the outer surface (along the outer diameter) of the split-ring shells 27. The split-ring shells 27 may include an indentation on the outer surface. The indentation can be sized to receive the band 28. The inner diameter of the band 28 may be sized to secure the split-ring shells 27 to the intermediate sleeve 24. In some examples, the outer diameter of the band 28 may equal to the outer diameter of the split-ring shells 27 such that the outer surface of band 28 creates a continuous surface with the outer surface of the split-ring shells 27 when the band 28 is received by the indentation in the split-ring shells 27. In other examples, the band 28 can extend beyond the diameter of the split-ring shells 27. The split-ring shells 27 may include steel or similar material, or otherwise may be rigid. The band 28 may be rigid or flexible and may be made of a material strong enough to securely mount the split-ring shells 27 to the intermediate sleeve 24. The band 28 may be coupled to the split-ring shells 27 by sliding, snapping, pushing, or otherwise inserting the band into the indentation in the split-ring shells 27, or it may be welded, fastened, or otherwise joined around the indentation in the split-ring shells.
The intermediate sleeve 24 of the motor shaft transmission assembly 18 may be positioned between the motor shaft 21 and the interference apparatus, and may be coupled to an enlarged portion of the motor shaft 21 as shown in
In some aspects, the motor shaft transmission assembly may also include a spacer sleeve 23 and an axial thrust bearing 26. The axial thrust bearing 26 may contain the motor shaft 21 in the axial direction. The spacer sleeve 23 may place axial pre-load on the axial thrust bearing 26. As illustrated in
Following a failure of the drill motor, the interference apparatus of the motor shaft transmission assembly 18, the interference apparatus may prevent certain components of the motor shaft transmission assembly 18 from falling, or being lost, downhole in the event of separation. For example, when separation occurs, the outer surface of the split-ring shells 27 may create an interference with the up-hole axial end of the stationary sleeve 25, preventing the interference apparatus from moving in a downhole direction beyond the up-hole axial end of the stationary sleeve 25. When the split-ring shells 27 contact the stationary sleeve 25, there may be a moment placed on the split-ring shells 27. The L-shape of the cross-section of the split-ring shells 27 can support the moment-loading and can help prevent the split-ring shells from rolling out from the intermediate sleeve 24. Because the split-ring shells 27 may be mounted to the intermediate sleeve 24, the interference of the split-ring shells 27 with the stationary sleeve 25 may prevent the intermediate sleeve 24 from falling downhole. Similarly, because the intermediate sleeve 24 is coupled to the motor shaft 21, the motor shaft 21 and any other components attached thereto (e.g., a drill bit 14) may be prevented from falling downhole.
Various types of retaining devices, in addition to a band, can be used to secure split-ring shells.
The outer surface of the split-ring shells 27 may have two sections (or ends) having different outer diameters. The downhole end of the outer surface of the split-ring shells 27 may have an outer diameter greater than the outer diameter of the uphole end of the split-ring shells 27. The split-ring shells 27 may be mounted to the intermediate sleeve 24 by a cylindrical shell 31 coupled to the outer surface of the uphole end of the split-ring shells 27. The cylindrical shell 31 may be coupled to the split-ring shells 27 by sliding, pushing, or otherwise placing the cylindrical shell 31 onto the outer surface of the uphole end such that it contacts an axial edge of the downhole end of the split-ring shells 27. The cylindrical shell 31 may be sized such that it secures the split-ring shells 27 to the intermediate sleeve 24. A ring 32 may be coupled to the split-ring shells 27 such that it prevents the cylindrical shell 31 from decoupling from the split-ring shells 27. The ring 32 may be coupled to the split-ring shells 27 by sliding, snapping, pushing, or otherwise placing the ring 32 onto the intermediate sleeve and contacting an axial edge of the cylindrical shell 31. In some aspects, the split-ring shells 27 may include an indentation for receiving the ring 32. In such aspects, the ring 32 may have an outer diameter such that the outer surface of the ring 32 radially extends beyond the outer surface of the uphole end of the split-ring shells 27 when the ring 32 is received into the indentation of the split-ring shells 27.
The cylindrical shell 31 may be made of steel or similar material, or otherwise may be rigid. The ring 32 may be rigid or flexible and may be made of a material strong enough to secure the cylindrical shell 31 to the split-ring shells.
In other aspects, the retaining device may include a cylindrical shell 31 and a ring 32. The cylindrical shell 31 may be made of the same material as other components of the motor shaft transmission assembly 18 (e.g., steel) and may be rigid and strong enough to prevent the split-ring shells 27 from demounting from an intermediate sleeve 24 during operation of the drilling system 10 and after separation of components of the motor shaft transmission assembly 18. The ring 32 may be a retaining ring, a spiral ring, a band strip, a clamp, or other fastener known in the art, and may be flexible or rigid. The ring 32 may be made from a material strong enough to prevent the cylindrical shell from decoupling from the split-ring shells during operation of the drilling system 10 and after separation of components of the motor shaft transmission assembly 18.
In block 52, the split-ring shells 27 may be mounted to an intermediate sleeve 24 of the motor shaft transmission assembly 18. In some aspects, the split-ring shells 27 may be mounted to the intermediate sleeve 24 by inserting one leg of the split-ring shells into a groove profiled into the intermediate sleeve 24 that is sized to receive the leg of split-ring shells 27. The split-ring shells 27 may be joined together around the intermediate sleeve 24 such that the split-ring shells 27 form a ring shape that encircles the intermediate sleeve 24.
In block 53, a retaining device is coupled to the split-ring shells. In some aspects, the split-ring shells 27 may include an indentation on the outer surface of the split-ring shells that is sized to receive a band 28. The band 28 may be slid, snapped, pushed, or otherwise inserted into the indentation of the split-ring shells 27 to prevent the split-ring shells 27 from demounting from the intermediate sleeve 24. In other aspects, the split-ring shells 27 may include an outer surface having two ends having different outer diameters. The outer diameter of the downhole end of the split-ring shells 27 may be greater than the outer diameter of the uphold end of the split-ring shells 27. A cylindrical shell 31 may be slid onto the uphole end of the split-ring shells 27 until the cylindrical shell 31 reaches, or makes contact with, an axial edge of the downhole end of the split-ring shells 27. A ring may be slid onto the uphole end of the split-ring shells 27 such that the ring 32 prevents the cylindrical shell 31 from sliding off the uphole end of the split-ring shells 27. In some aspects, the outer surface of the uphole end of the split-ring shells 27 may include an indentation sized to receive the ring 32. The ring 32 may have an outer diameter such that the outer surface of the ring 32 radially extends beyond the outer surface of the uphole end of the split-ring shells 27 when the ring 32 is received into the indentation of the split-ring shells 27.
The foregoing description of the examples, including illustrated examples, has been presented only for the purpose of illustration and description and is not intended to be exhaustive or to limit the subject matter to the precise forms disclosed. Numerous modifications, adaptations, uses, and installations thereof can be apparent to those skilled in the art without departing from the scope of this disclosure. The illustrative examples described above are given to introduce the reader to the general subject matter discussed here and are not intended to limit the scope of the disclosed concepts.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2015/013187 | 1/28/2015 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/122468 | 8/4/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1293617 | Obertop | Feb 1919 | A |
2022355 | Klausmeyer | Nov 1935 | A |
4924948 | Chuang et al. | May 1990 | A |
5125148 | Krasnov | Jun 1992 | A |
5711205 | Wolfer et al. | Jan 1998 | A |
7445061 | Falgout, Sr. et al. | Nov 2008 | B1 |
7985037 | Duggan | Jul 2011 | B2 |
7987930 | Purcell | Aug 2011 | B2 |
8025110 | Falgout, Jr. et al. | Sep 2011 | B2 |
8100200 | Wolfer | Jan 2012 | B2 |
20080185187 | Scott et al. | Aug 2008 | A1 |
20100187013 | Falgout, Jr. et al. | Jul 2010 | A1 |
20100187016 | Marshall et al. | Jul 2010 | A1 |
20100314172 | Underwood et al. | Dec 2010 | A1 |
20120314172 | Oohira | Dec 2012 | A1 |
20130186692 | Purcell | Jul 2013 | A1 |
20130213661 | Reimert et al. | Aug 2013 | A1 |
20140202707 | Howell et al. | Jul 2014 | A1 |
20180058151 | Park | Mar 2018 | A1 |
Number | Date | Country |
---|---|---|
2046538 | Oct 1989 | CN |
1209858 | Mar 1999 | CN |
802494 | Feb 1981 | SU |
894166 | Dec 1981 | SU |
2013074865 | May 2013 | WO |
2014126889 | Aug 2014 | WO |
Entry |
---|
International Patent Application No. PCT/US2015/013187, International Search Report and Written Opinion, dated Sep. 23, 2015, 13 pages. |
Canadian Application No. CA2,970,134, Office Action dated Feb. 28, 2018, 3 pages. |
Gulf Council Application No. GC2015-30630, Office Action dated Mar. 29, 2018, 5 pages. |
Russian Application No. RU2017122818, Notice of Decision to Grant dated Jul. 2, 2018, 16 pages (4 pages of English Translation and 10 pages of Official Copy). |
Russian Application No. RU2017122818, Office Action dated Apr. 6, 2018, 12 pages (5 pages of English Translation and 7 pages of Official Copy). |
Number | Date | Country | |
---|---|---|---|
20170343046 A1 | Nov 2017 | US |