The motor spindle depicted in the figures is designed in a compact fashion and serves to drive cutting tools in rotation on a machine tool. The motor spindle includes two housings which are screwed together, namely a motor housing 10 for a spindle motor 11 and a spindle housing 12, for a spindle shaft 13 and a tool holder means 14 for clamping a machining cool or a tool receiving means 15 holding such a cutting cool.
The spindle motor 11 in the motor housing 10 exhibits an external stator 16 and an internal rotor 17, which
fits around a motor shaft 18 in the form of a hollow shaft. The motor housing 11 is terminated at an end portion, remote from the spindle housing 12, by a pillow block 19, which contains an anti-friction bearing 20 as a rotary bearing for the motor shaft 18 on this one side. Moreover, in this pillow block 19 there is a rotation sensor 21 responsive to the speed of rotation of the motor shaft 18 and thus of the spindle motor 11.
The motor shaft 18 is on the spindle housing side fixedly connected with a tubular splined ring element 22 having an internal ring of splines. The spline ring element 22 and with it the corresponding end of the motor shaft 18 is rotatably supported on an annular housing portion 23 by means of a further anti-friction bearing 24. The anti-friction bearing 24 lies in this case at the periphery on a ring-like bearing socket 25, which constitutes an intermediate member between the anti-friction bearing 24 and the ring-like housing portion 23. The anti-friction bearing 24 is secured by means of two threaded elements 26 and 27 on the splined ring element 22 and, respectively, in the bearing socket 25.
The spindle shaft 13 is supported in a rotatable manner in the spindle housing 12 using four anti-friction bearings 28 through 31. The number of the anti-friction bearings 28 through 31 and also of the anti-friction bearings 20 and 24 for supporting the motor shaft 18 may naturally be varied although however at least two bearing points are necessary in order to provide independent bearing means for the two shafts, namely the spindle shaft 13 and the motor shaft 18.
A cylindrical end portion, which faces the motor housing 10, of the spindle shaft 13 is provided as a splined hub 32 with peripheral splines for meshing with the splined ring element 22 on the motor shaft 18 and accordingly providing a torque transmitting spline enclosure means between the spindle shaft 13 arid the motor shaft 18. In this case the splined hub 32 and thus the spindle shaft 13 are able to slide owing to these splines axially in relation to the motor shaft 18.
The tool holder means 14 in the spindle shaft 13 essentially comprises a tubular tool clamping claw 33 which in a known manner fits into a recess 34 in the respective tool receiving means 15. The tool clamping claw 33 in this case fits around a collet 35, which by means of a draw rod 26 connected firmly to same, is able to be slid in relation to the tool clamping claw 33. The collet 35 has at one end a bracing head 37 which during an axial movement of the draw rod 36 toward the motor housing 10 urges the elastic tool clamping claw 33 within the recess 34 radially outward and accordingly locks the tool receiving means 15 to the spindle shaft 13.
The draw rod 36 extends from the spindle shaft 13 through the motor shaft 18 and terminates in an actuating unit 38, which is secured to the pillow block 19. The draw rod 36, which slides axially in the spindle shaft 13, possesses an annular ledge 39 at its terminal portion remote from the spindle housing 12, the diameter of such ledge being slightly smaller than the internal diameter of a concentric longitudinal channel through the motor shaft 18 with the result that the annular ledge 39 and accordingly also the draw rod 36 are able to slide in the longitudinal channel and thus in the motor shaft 18 freely. Two disk spring stacks 40 and 41 fit round the draw rod 36 like washers and are separated from each other by a support disk 42 in the middle portion of the motor shaft 18. These two disk spring stacks 40 and 41 bear on the one hand against the annular ledge 39 and on the other hand by way of a disk shim 43 against the spindle shaft 12 so that the collet 35, owing to the force of the two disk spring stacks 40 and 41, shifts the tool clamping claws apart and accordingly secures the tool receiving means 15 in the spindle shaft 13. A fluid power servo member 44 in the form of a power cylinder in the actuating unit 38 possesses a piston 45 able to be shifted axially by fluid power, which on actuation of the actuating unit 38 is moved aginsst the draw rod 36 and thrusts it toward the spring force of the disk spring stack 40 and 41 toward the spindle housing 12. Accordingly the collet 35 is thrust out of the tool clamping claw 33 so that the tool receiving means 15 is released and can be removed. Coolant and/or lubricant may be transferred by way of a rotary union 46 into a duct 47 aligned with the draw rod 36 in the interior of the actuating unit 38. Into this duct there extends a small tube 48 secured at one end to the draw rod 36, the tube 48 being sealed by sealing elements 49 to ensure a sealing connection with the duct 47. The draw rod 36 is tubular in configuration with the result that coolant and/or lubricant may flow from the tube 48 through a concentric longitudinal duct 50 in the draw rod 36 to the tool clamping means 14 in the spindle shaft 13 and thus to the tool receiving socket 15 and to the respective machining tool held therein.
The end portion, extending from the motor shaft 18 into a cavity 51 in the actuating unit, is ball-like in form and cooperates with a contact-free displacement sensor 52 in order to detect the position of the draw rod 36 and thus the strain condition of the tool clamping means 14. Other known position detection instrumentalities could naturally be also employed here as well.
On the spindle housing side the motor housing 10 possesses a tube-like end portion 53 into which the spindle housing 12 partially fits. An annular flange 54 on the spindle housing 12 abuts the end face of this end portion 53, attachment screws 55 serving for securing such annular flange 54 and thus the spindle housing 12 on this end portion 53 and thus on the motor housing 10.
For removal of the spindle housing 12 the attachment screws 55 are slackened off and then the spindle housing 12 may be pulled off. Then the splined hub 32 slides clear of the splined ring element 22 and the draw rod 36 with the disk spring stacks 40 and 4 will slide out of the motor shaft 18. This structural unit, made up of the spindle housing 12 and the draw rod 16, able to be removed bodily is illustrated in
Number | Date | Country | Kind |
---|---|---|---|
06 019 630.0 | Sep 2006 | EP | regional |