MOTOR VEHICLE AND METHOD FOR STEERING A MOTOR VEHICLE

Information

  • Patent Application
  • 20210380166
  • Publication Number
    20210380166
  • Date Filed
    September 09, 2019
    4 years ago
  • Date Published
    December 09, 2021
    2 years ago
Abstract
A motor vehicle (10), in particular an autonomous motor vehicle, includes a steering system (38, 30), a plurality of wheels (18, 20) that can be steered by means of the steering system (28, 30), and wheel housings (24, 26) for said wheels (18, 20). The steering system (28, 30) is designed such that the steering system steers the steerable wheels (18, 20) of a wheel pair in question in the same direction, in the case of joint steering to the left or right at a steering angle a up to a limit angle ag defined by the shape of the corresponding wheel housings (24, 26), and in opposite directions, in the case of steering to the left or right at a steering angle a exceeding the limit angle αg.
Description
TECHNICAL FIELD

The disclosure relates to a motor vehicle, in particular an autonomous motor vehicle, comprising a steering system, a plurality of wheels that can be steered by means of the steering system, and wheel housings for said wheels. The disclosure further relates to a method for steering a motor vehicle of this type and to a computer program product for carrying out the method.


BACKGROUND

In a motor vehicle, the wheels are generally arranged in two tracks. If the wheels of the vehicle are not constrained to a rail or some other guide, at least two of the wheels can generally be actively steered by means of a steering system, i.e., they can be pivoted relative to the respective track. Such a motor vehicle is usually a motor vehicle for driving on the road, that is to say a road vehicle. A commercially available passenger vehicle is thus such a motor vehicle. Likewise, a truck, a bus, etc.


An autonomous motor vehicle or self-driving motor vehicle is a motor vehicle that can drive, control, and park without the influence of a human driver (highly automated driving or autonomous driving). An autonomous passenger transport vehicle is also known as an (autonomous) people mover. In this context, autonomous means that none of the people being transported controls the vehicle, but rather that the passenger transport vehicle is self-controlled or automatically controlled. Thus, the people transported are usually “only” passengers.


With the integration of the electric drive in the individual wheels and with the combination of individually driven and steerable wheels (wheel modules), new possibilities arise in terms of vehicle maneuverability in confined spaces. For example, the smallest parking spaces can be used by parking across the direction of travel. This is made possible, for example, by an electric actuator integrated into the wheel module for steering, enabling a steering angle of up to 90°.


In motor vehicles of this type, great maneuverability, together with a compact design, are often desired.


The publications JP 2016-22756 A, U.S. Pat. No. 9,834,249 B2 and US 2016/0236710 A1 show various vehicles with steering systems that enable large steering angles and thus great maneuverability of the corresponding vehicles. For this purpose, however, the wheels or wheel modules require appropriate space for steering.


SUMMARY

It is desirable to provide measures which allow great maneuverability in the motor vehicle with a compact construction of the motor vehicle.


In a motor vehicle, in particular an autonomous motor vehicle, having a steering system, multiple wheels which can be steered by means of the steering system and wheel housings for these wheels. The steering system is designed in such a way that the steering wheel steers the steerable wheels of a wheel pair in question in the same direction, in the case of joint steering to the left or right at a steering angle α up to a limit angle αg in question defined by the shape of the corresponding wheel housings, and in opposite directions, in the case of steering to the left or right at a steering angle a exceeding the limit angle αg. In this manner, the steering angle can still be selected from the range 0°≤α≤90°, wherein the corresponding wheel housings can now be dimensioned smaller. Depending on their shape, these smaller wheel housings then determine the limit angle αg. The limit angle is then in the range 30°≤αg≤60°. All angle specifications relate to straight-line drive and are only defined to be positive regardless of the steering direction, i.e., to be understood as absolute angle values.


According to a preferred embodiment, the limit angle αg is in the range 40°≤αg≤50°, in particular 45°. When the limit angle is selected in this angular range, the corresponding wheel housings can be designed to be particularly compact.


The motor vehicle may be an autonomous passenger transport vehicle. An autonomous passenger transport vehicle is also known as an (autonomous) people mover. In this context, autonomous means that none of the people being transported controls the vehicle, but rather that the passenger transport vehicle is self-controlled or automatically controlled.


The steering may have at least one interface for control by a control module for autonomous driving. Such a configuration arises for the autonomous motor vehicle and in particular also for the autonomous passenger transport vehicle.


The steering may be a steering knuckle steering. The corresponding steering knuckles determine the axis of rotation when steering. This steering axis of rotation is usually located outside the wheels.


The motor vehicle may have an electric or hybrid drive system. In particular, the vehicle may utilize wheel hub (electric) motors.


Furthermore, the actively steerable wheels may be driven wheels, in particular wheels driven by means of a wheel hub motor.


In the method the steerable wheels of a wheel pair in question are steered in the same direction, in the case of joint steering to the left or right at a steering angle α up to a limit angle αg in question defined by the shape of the corresponding wheel housings, and in opposite directions, in the case of steering to the left or right at a steering angle α exceeding the limit angle αg.


The limit angle may be in the range 40°≤α≤50°, particularly preferably 45°.


The embodiments mentioned above for the multi-track motor vehicle also apply accordingly to the method for steering a motor vehicle which has a plurality of steerable wheels and wheel housings for these wheels.


A computer program product includes program parts that are loaded into a processor of a computer-based control module, in particular a computer-based control module for autonomous driving, to carry out the aforementioned method.





BRIEF DESCRIPTION OF THE DRAWINGS

In the following, the method is explained by way of example with reference to the accompanying drawings using preferred exemplary embodiments. In the figures:



FIG. 1: shows a schematic representation of a front area of a motor vehicle with parallel, slightly turned, steerable wheels,



FIG. 2: shows a schematic representation of a front area of parallel steerable wheels, strongly turned in the same direction, and



FIG. 3 shows a schematic representation of a front area of the motor vehicle as shown in FIG. 1 with steerable wheels, turned very strongly antiparallel.





DETAILED DESCRIPTION


FIG. 1 shows the front area of a vehicle 10 in a schematic representation. The forward direction of travel is indicated by an arrow 12. The vehicle 10 is, for example, a passenger vehicle or some other motor vehicle. The motor vehicle can in particular be a motor vehicle for autonomous driving, such as an autonomous passenger transport vehicle.


The vehicle 10 shown here is a two-track vehicle 10, having two wheel modules 14, 16, each with a steerable wheel 18, 20 in its front area. The wheels 18, 20 shown here can be steered by means of a steering system of the vehicle 10 (only shown in a few parts). In addition to the wheel modules 14, 16, the front area of a car body 22 of the vehicle 10 is also shown. This car body 22 forms a wheel housing 24, 26 (often also called wheelhouse) for each of the wheel modules 14, 16.


Said steering is a type of steering knuckle steering that has a steering knuckle 28, 30 for each of the wheels 18, 20, defining the steering axis of rotation about which the respective steerable wheel 18, 20 can be steered to the right or left.


One of the wheel modules 14 thus has the wheel 18 and the steering knuckle 28, and the other one of the wheel modules 16 has the wheel 20 and the steering knuckle 30. When driving straight ahead, these are built and arranged in mirror image to one another.



FIG. 1 now shows the front area of the motor vehicle 10—on the one hand, with the steerable wheels 18, 20 when driving straight ahead, on the other hand, with the steerable wheels 18, 20 turned slightly to the left parallel in the same direction. The steering direction is shown as arrow 32. The steering angle α is very close to a limit angle αg determined by the shape of the corresponding wheel housing 26.



FIG. 2 now shows the front area of the motor vehicle 10—on the one hand, with the steerable wheels 18, 20 when driving straight ahead, on the other hand, with the steerable wheels 18, 20 turned slightly to the left parallel in the same direction. In contrast to FIG. 1, however, the steering angle α is greater than the limit angle αg, determined by the shape of the corresponding wheel housing 26. The lack of a corresponding installation space can be seen in the area 34, as a result of which such a wide, co-directional turning with a steering angle α>αg is not possible with this type of construction of the wheel housing 26.


In order to enable turning with a steering angle α>αg despite the predetermined shape of the wheel housings 24, 26, the steerable wheels 18, 20 are turned in oppo-site directions (parallel) at a steering angle α>αg. This is shown in FIG. 3 for the steering angle α≈90°, that is to say an angle α>>αg. Both steerable wheels 18, 20 of the wheel pair are again guided essentially in parallel for a subsequent drive (for example as part of a parking process).


This results in the following procedure for steering the motor vehicle 10, in which the steerable wheels 18, 20 are guided essentially parallel in pairs, at least when driving: The steerable wheels 18, 20 of the pair of wheels are turned in the same direction when steering in the case of joint steering to the left or right at α steering angle α up to a limit angle αg in question defined by the shape of the corresponding wheel housings 24, 26, and in opposite directions, in the case of steering to the left or right at a steering angle a exceeding the limit angle αg.


In the following, important aspects of the method shall be described again in other words.


An installation space-optimized arrangement for the wheel module/vehicle wheel is proposed. In particular, a steering method is proposed which comprises steering the wheels 18, 20 in opposite directions, so that the respective wheel housing 24, 26 can be designed to optimize installation space.


This results in the following features:


The vehicle has a steering device which enables the wheels of a vehicle axle to steer in opposite directions;


During “normal” travel, the wheels 18, 20 on one axle are preferably turned in the same direction;


During perpendicular parking, with a wheel angle of about 90°, the wheels 18, 20 of an axle are turned in opposite directions.



FIG. 2 shows the underlying problem with a wheel arrangement with a 90° steering angle. When the wheels are turned in the same direction, the right front wheel 18 partially moves out of the wheel housing 24 and therefore does not require any additional installation space, while the left front wheel 20 swivels into the wheel housing 26 and collides with the wheel housing contour of the wheel housing 26.


The “collision” is prevented by the wheels 18, 20 of each axle turning in opposite directions.



FIG. 3 shows the advantages of the opposite steering angle in comparison: both wheels 18, 20 are pivoted out of the respective wheel housing 24, 26 when the steering angle is opposite and require no additional installation space.


The pivoting out of the wheels 18, 20 is based on the correspondingly coordinated wheel kinematics: the wheel contact point of each steered wheel 18, 20 describes a path around the circle created by the disturbance force lever arm. The representations make it clear that only a counter-rotation ensures that the wheels 18, 20 pivot out of the wheel housing 24, 26. The wheel contact points here are located on a line or plane that is perpendicular to the vehicle axis.


In contrast thereto, when the wheel is turned in the same direction, the circular movement around the disturbance force lever arm creates an offset between the two wheel contact points: the wheel contact point of the left front wheel (VL) 20 is pivoted inwards around the circle and moves it towards the inner contour of the wheel housing (into the wheel housing 26).


List of Reference Symbols


10 Vehicle



12 Arrow (direction of travel)



14 Wheel module



16 Wheel module



18 Wheel



20 Wheel



22 Vehicle body



24 Wheel housing



26 Wheel housing



28 Steering knuckle with axle



30 Steering knuckle with axle



32 Steering direction



34 Lack of installation space



60 Steering angle



60
g Limit angle

Claims
  • 1. A motor vehicle having a steering system, multiple wheels which can be steered by means of the steering system, and wheel housings for these wheels, wherein the steering system is designed such that the steering system steers the steerable wheels of a wheel pair in question in a same direction for steering angles α up to a limit angle αg, and in opposite directions for steering angles α exceeding the limit angle αg.
  • 2. The motor vehicle according to claim 1, wherein the limit angle is in the range 40°≤αg≤50°.
  • 3. The motor vehicle according to claim 1, wherein the motor vehicle is an autonomous passenger transport vehicle.
  • 4. The motor vehicle according to claim 1, wherein the steering system has at least one interface for control by a control module for autonomous driving.
  • 5. The motor vehicle according to claim 1, wherein the steering system is a steering knuckle steering system.
  • 6. The motor vehicle according to claim 1, wherein the motor vehicle comprises an electric or hybrid drive system.
  • 7. The motor vehicle according to claim 1, wherein the actively steerable wheels are driven wheels in particular wheels driven by a hub motor.
  • 8. A method for steering a motor vehicle the vehicle having a plurality of steerable wheels and wheel housings for these wheel, the steerable wheels being guided essentially parallel in pairs when driving, wherein the steerable wheels of a wheel pair in question are steered in a same direction at a steering angle α a up to a limit angle αg, and in opposite directions when the steering angle α exceeds the limit angle αg.
  • 9. The method according to claim 8, wherein the limit angle is in the range 40°≤α≤50°.
  • 10. A computer program product comprising program components that are loaded into a processor of a computer-based control module, in particular a computer-based control module for autonomous driving, for carrying out the method according to claim 8.
  • 11. The motor vehicle according to claim 1, wherein steering the steerable wheels in a same direction at a steering angle exceeding the limit angle would result in interference between one of the wheels and a corresponding one of the wheel housings.
  • 12. A motor vehicle comprising: left and right steerable wheels; anda steering system configured to: in response to a commanded left steering angle less than a threshold, steer both the left and right steerable wheels toward the left, andin response to a commanded left steering angle greater than the threshold, steer the right wheel toward the left and steer the left wheel toward the right.
  • 13. The motor vehicle of claim 12 wherein the steering system is further configured to: in response to a commanded right steering angle less than the threshold, steer both the left and right steerable wheels toward the right, andin response to a commanded right steering angle greater than the threshold, steer the right wheel toward the left and steer the left wheel toward the right.
  • 14. The motor vehicle of claim 12, wherein the threshold is between 40° and 50°.
  • 15. The motor vehicle of claim 12, wherein the left and right steerable wheels are each driven by a hub motor.
  • 16. The motor vehicle of claim 12, further comprising left and right wheel housings, wherein steering the left wheel to the left at the left steering angle greater than the threshold would result in interference between the left wheel and the left wheel housing.
Priority Claims (1)
Number Date Country Kind
102018127731.8 Nov 2018 DE national
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is the U.S. National Phase of PCT Appin. No. PCT/DE2019/100799 filed Sep. 9, 2019, which claims priority to DE 102018127731.8 filed Nov. 7, 2018, the entire disclosures of which are incorporated by reference herein.

PCT Information
Filing Document Filing Date Country Kind
PCT/DE2019/100799 9/9/2019 WO 00