The invention relates to a motor vehicle door lock having a lock housing, also with a lock cylinder nut supported in the lock housing, and having at least one locking element that can be acted upon by a positioning element.
A motor vehicle door lock constructed as above is described in DE 100 14 321 A1. In that case, the lock cylinder nut supported in the lock housing operates on an actuating lever that is coupled to a locking device. The locking device may be moved between an unlocked position and a locked position either by the lock cylinder nut or by an electric actuator.
Also in this context a distinction is made between a single locked position and a double locked position. The single locked position corresponds to an action in which a locking lever moves to a decoupled position to break a mechanical connection from a door opener as far as the lock latch or a locking mechanism. For the double locked position, the locking lever in question may be blocked in the decoupled position as well. This state is also referred to in practice and in the literature as the “double lock” position.
The lock cylinder nut in the lock housing is connected mechanically to a lock cylinder, which is typically fitted in an associated motor vehicle door. This may be assured with the aid of a corresponding adjusting rod that transfers rotary movements of the lock cylinder to the lock cylinder nut, which in turn acts on the positioning element.
In order to convert the rotary motion of the lock cylinder nut into a linear motion of the actuating lever, one end of the actuating lever of DE 100 14 321 A1 is provided with a toothing system, which engages with a matching toothing system provided on the lock cylinder nut. This interaction between the two toothing systems is associated with disadvantages, not only because of the possibility that it may become dirty, but also because it is susceptible to wear, and is consequently unsuitable for reliable function in the long term.
Independently of the motor vehicle door lock described in the preceding text, a locking device for a motor vehicle door lock in which a coupling element extends out of the lock housing so that it is able to be connected directly to a transmission element was also disclosed in DE 10 2004 027 381 A1. The transmission element is impinged upon by an actuating lever.
Additionally, DE 41 31 891 A1 describes a blocking device for doors of a motor vehicle, in which a lock cylinder mounted in the vehicle door is operable from the outside with the aid of a key. The lock cylinder is connected to a deadbolt that can be rotated mechanically with the key if the engine is unable to run.
The technical problem underlying the invention is to further develop a motor vehicle door lock of the construction described in the introduction in such manner that functionally reliable operation is guaranteed for the long term under all conditions.
In order to solve this technical problem it is provided within the scope of the invention that the lock cylinder nut of a species-related motor vehicle door lock has a connected eccentric element that engages in an eccentric mounting in the positioning element for the purpose of displacing it.
Thus, in contrast to the prior art according to DE 100 14 321 A1, the solution according to the invention explicitly makes no use of a toothing system as a means of mechanical connection between the lock cylinder nut and the positioning element. Instead, according to the invention the eccentric element connected to the lock cylinder nut and the eccentric mounting are permanently coupled with one another in a sliding manner. The clear span of the eccentric mounting is designed to match a maximum deflection created by the eccentric element. Consequently, however, there are positions that the eccentric element can take up in which it can not in be contact with either or both of the walls of the eccentric mounting concerned, but is disconnected from them.
This makes it possible for the locking element to be impinged upon by the positioning element, without the aid of the lock cylinder nut. The locking element may also be moved to the desired function position by means of a motorised drive, instead.
In fact, the locking element in question is typically able to assume at least two function positions, “locked” and “unlocked”. Both function positions can be preset mechanically via the lock cylinder, the lock cylinder nut, the positioning element and finally the locking element. In addition, however, displacement by electric means with the aid of the motorised drive is also possible. For this purpose, the motorised drive may engage in a mounting in the locking element. In this way, it is possible for the motorised drive to act directly upon the locking element to move it to either of the function positions, “locked” and “unlocked”.
The eccentric element typically takes up a neutral position after every mechanical (or electric) positioning movement (with the aid of the lock cylinder). In this neutral position, the eccentric element is free from the eccentric mounting that surrounds it and also free from the motorised drive. Thus with the eccentric element in the respective neutral position the locking element can be moved to either of the function positions described with the aid of the motorised drive. This typically means that in this operation the positioning element is displaced or could be displaced, but the eccentric element remains in its function position, the neutral position. This in turn means that the electric or motorised drive only has to generate small forces and may therefore be of compact, inexpensive design. Starting with the neutral position the motorised drive can therefore lock and unlock the said vehicle door lock.
A further consequence is that the functional reliability is considerably greater than with the prior art. The same applies for the maximum achievable service life. Because in contrast to the prior art according to DE 100 14 321 A1, the motorised drive has not necessarily to displace the positioning element so that it takes up one of the two function positions. This is possible without the application of great force, while unintended gearing engagement, misalignments and the like are explicitly avoided because such elements are explicitly not used according to the invention.
Besides the conceivable motorised displacement of the locking element, a particularly high degree of functional reliability is guaranteed if the locking element is impinged upon manually. Because the positioning element can be displaced easily with the aid of the eccentric element connected to the lock cylinder nut, typically in linear manner. Such a positioning movement is not hindered by any possible soiling or even wear between the eccentric element and the eccentric mounting. Moreover, the lock cylinder nut and/or the positioning element may be manufactured from plastic, thereby enabling particularly low-friction operation, and at the same time the weight of a motor vehicle door lock equipped in such manner within the scope of the invention is reduced compared with the solid designs of the prior art as described in DE 100 14 321 A1.
As a result, a novel motor vehicle door lock is provided in which it is possible for the said door lock to be moved to its function positions both manually and by motorised means. In this context, the actuating forces involved are low in both cases. This renders operation more convenient and also enables the implementation of a particularly compact, lightweight electric motor as a component of the motorised drive. At the same time, functional reliability is assured for the long term, because the use of engaging mechanical elements such as toothing systems is explicitly avoided. Instead, the invention makes use of surfaces that slide past each other over large areas, in the case of the eccentric element and the eccentric mounting that accommodates the element. In this way, not only is wear reduced, but functional failures can also be prevented de facto. These represent the essential advantages of the invention.
According to an advantageous variation, the eccentric element is conformed on the lock cylinder nut. In fact, the eccentric element and the lock cylinder nut may define an integral component, which may be produced for example as a plastic injection moulded part. It has further proven generally advantageous if the eccentric element and the lock cylinder nut in this context share a common axis of rotation.
As a rule, the eccentric element has the form of a cam. Additionally, the positioning element is most often a lock slider that is capable of linear movement. One end of the positioning element, or the linearly movable lock slider, generally controls the eccentric mounting described previously, in which the eccentric element connected to the lock cylinder nut engages. An actuating pin is provided on the other end of the positioning element.
The actuating pin engages in a pin receiving hole in the locking element. This enables the positioning element to act on the locking element via the actuating pin and cause it to move to either of the two function positions “locked” and “unlocked”.
Normally, the locking element is mounted so as to be rotatable in the lock housing. Since the pin receiving hole is typically provided with a radial offset relative to an associated axis of rotation of the locking element in the lock housing, the locking element is rotatable at will with the aid of the actuating pin connected to the positioning element. To this end, the linear or adjusting movement of the positioning element is converted into a corresponding rotating movement of the locking element.
In this context, one end position of the rotating movement corresponds for example to the “locked” function position, and the other end position of the rotating movement of the locking element corresponds to the “unlocked” function position. As a rule, the neutral position of the locking element is located between these two end positions. The neutral position of the locking element corresponds to the neutral position of the eccentric element and consequently of the eccentric mounting and the positioning element as well.
The positioning element is generally designed such that it engages below the locking element. This causes the actuating pin provided at the end of the positioning element to be inserted in the pin mounting hole on the locking element from below. This design of the positioning element or lock slider also enables it to be moved back and forth along the bottom of the lock housing. Consequently, the lock housing functions as a guide for the positioning element or the linearly movable lock slider.
In this way, the area above the locking element is free from elements for mechanically displacing the locking element. Thus, the additional and optional motorised drive may be installed in this area above the locking element, and is thus able to interact directly with the mounting in the locking element, as described previously.
The eccentric mounting as such typically has a U-shaped cross-section. In fact, each wall of the eccentric mounting is high. In this configuration, the two legs of the “U” shaped eccentric mounting function as limit and sliding surfaces for the eccentric element or the cam that is advantageously provided here. The base of the U-shape of the eccentric mounting defines a bearing flange for the eccentric element or the integral component consisting of the lock cylinder nut and the eccentric element conformed therewith. This provides the structural unit consisting of the lock cylinder nut and the eccentric element with flawless axial guidance between an edge of the lock housing for supporting the lock cylinder nut on the one hand an the U-shaped base of the eccentric mounting on the other, wherein the base functions as a bearing flange for the cam or the component concerned.
In the following, the invention will be explained in greater detail with reference to a drawing representing an exemplary embodiment of the invention. In the drawing:
The figures represent a motor vehicle door lock. The motor vehicle door lock is typically located on the inside of a motor vehicle door—not shown here. The motor vehicle door is typically a motor vehicle side door and particularly a driver's door or a front passenger's door, and is equipped with a lock cylinder 1 for unlocking/locking with the aid of mechanical key, for example.
Lock cylinder 1, which is only shown in outline in
Lock cylinder nut 3 is supported rotatably in a lock housing 4. For this purpose, lock cylinder nut 3 engages in a corresponding rotary bearing mounting 5 in lock housing 4. According to the invention, lock cylinder nut 3 is furnished with a connected eccentric element 6. In the embodiment shown, eccentric element 6 is a cam 6 that is conformed with lock cylinder nut 3. This means that in the embodiment shown cam 6 and lock cylinder nut 3 form an integral component 3, 6. Integral component 3, 6 may have the form of a plastic injection moulded part.
The eccentric element or cam 6 is held in place in an eccentric mounting 7. Eccentric mounting 7 is part of positioning element 8. Lock cylinder nut 3 acts on a locking element 9 via positioning element 8. Locking element 9 may be a central locking element. Locking element 9 is mounted rotatably about an axis or axis of rotation 10 in lock housing 4.
In order to displace positioning element 8, lock cylinder nut 3 and the eccentric element 6 connected thereto engages in eccentric mounting 7 of positioning element 8. In the present arrangement, positioning element 8 is designed as a lock slider 8 that is capable of linear movement. The linear movements of lock slider 8 are indicated by a double-headed arrow in
Eccentric mounting 7 is located on one end of the positioning element or linearly movable lock slider 8. An actuating pin 11 is provided on the other end. Actuating pin 11 engages in a pin receiving hole 12 in locking element 9. It will be seen that pin receiving hole 12 in locking element 9 for accommodating actuating pin 11 is arranged with a radial offset relative to axis of rotation 10 of locking element 9. Consequently, the linear adjustment movement of positioning element or lock slider 8 indicated in
As is also shown, positioning element 8 clasps locking element 9 from below. Consequently, actuating pin 11 protrudes into pin receiving hole 12 of locking element 9 from below. In this way, the positioning element or lock slider 8 is guided along the bottom of lock housing 4. Lock housing 4 serves as an additional guide for positioning element or lock slider 8. Positioning element or lock slider 8 also moves in an intermediate space between the bottom of lock housing 4 and an underside of locking element 9.
This means that the upper side of locking element 9 is free from any components or elements of the manual locking device described previously. Thus, a motorised drive—not shown here—may be installed above locking element 9, so that motorised displacement of locking element 9 is then possible, and explicitly permitted, independently of the manual displacement described earlier. For the motorised displacement of locking element 9, an electric motor can engage either directly, or typically via intermediate elements such as an eccentric element, in a mounting 13 in locking element 9. Mounting 13 may be an eccentric mounting, which interacts with an eccentric element driven by the motorised drive to rotate locking element 9.
The design of the motorised drive and eccentric element and the associated mounting 13 or eccentric mounting 13 in locking element 9 may be similar or comparable, as described in patent DE 199 433 483 A1, which is held by the applicant. At all events, locking element 9 respective the motor vehicle door lock as a whole may also be moved to the “locked” function position shown in
Eccentric mounting 7 has a U-shaped cross-section. In fact, eccentric mounting 7 has two opposing legs 7a forming a “U” shape. The two U-shaped legs 7a each define limit and sliding surfaces for the eccentric element or cam 6. Also, it is configured such that the two U-shaped legs 7a face each other and are at a distance from each other, defining a clear span W of eccentric mounting 7 that is adapted to the maximum extension of eccentric element 6 inside eccentric mounting 7. This maximum extension of eccentric element 6 inside eccentric mounting 7 is assumed either in the “locked” position according to
On the other hand,
A motorised drive 15, 16 depicted in the drawings interacts with two fingers 14a, 14b of the locking element 9. These two fingers 14a, 14b define a clearance which does not interact with a projection 16 of the motorised drive 15, 16. In the “neutral position” of the locking element 9 shown in
Starting from the “neutral position” of
Besides the two “U” legs 7a, the U-shaped eccentric mounting 7 also has a U-base 7b. U-base 7b serves to provide additional support for cam 6, or assembly 3, 6 consisting of lock cylinder nut 3 and eccentric element 6. This means that U-base 7b functions as a bearing flange as well as pivot bearing mounting 5 in lock housing 4 for lock cylinder nut 3. Consequently, assembly 3, 6 consisting of lock cylinder nut 3 and eccentric element or cam 6 has a double bearing, in both pivot bearing mounting 5 and in U-base 7b of eccentric mounting 7. This means that the assembly 3, 6 in question is also secured axially.
The mode of operation is as follows. The “locked” state of the motor vehicle door lock is shown in
If lock cylinder 1 is actuated again toward the “locked position”, eccentric element 6 moves to the position shown in
If lock cylinder nut 3, and therewith also the attached eccentric element or cam 6, is in the “neutral position” shown in
For the transition from the “neutral position” according to
As a consequence of this, applying a force to the interior or exterior door handle means that the ratchet may be actuated and a desired opening effected. The associated motor vehicle door may then be opened.
This application claims priority to U.S. Provisional Patent Application No. 62/348,427 filed Jun. 10, 2016, which is hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4664430 | Bernard | May 1987 | A |
5078436 | Kleefeldt | Jan 1992 | A |
5149156 | Kleefeldt | Sep 1992 | A |
5309745 | Ursel et al. | May 1994 | A |
5419597 | Brackmann | May 1995 | A |
5667260 | Weyerstall | Sep 1997 | A |
5852943 | Dutka | Dec 1998 | A |
5997055 | Strathmann | Dec 1999 | A |
6065316 | Sato | May 2000 | A |
6338508 | Kleefeldt | Jan 2002 | B1 |
6648379 | Kordowski | Nov 2003 | B1 |
6669247 | Swan | Dec 2003 | B2 |
6705649 | Reddmann | Mar 2004 | B1 |
6964438 | Koike | Nov 2005 | B2 |
7000956 | Fisher | Feb 2006 | B2 |
10309130 | Schiffer et al. | Jun 2019 | B2 |
10400488 | Dufay | Sep 2019 | B2 |
20030094818 | Tomaszewski | May 2003 | A1 |
20040129040 | Mathofer | Jul 2004 | A1 |
20050082842 | Warmke | Apr 2005 | A1 |
20120119520 | Akizuki | May 2012 | A1 |
20120139269 | Kouzuma | Jun 2012 | A1 |
20150240534 | Kuriyama | Aug 2015 | A1 |
20190226246 | Schiffer | Jul 2019 | A1 |
Number | Date | Country |
---|---|---|
41 31 891 | Apr 1993 | DE |
100 14 321 | Sep 2001 | DE |
10 2004 027 381 | Dec 2005 | DE |
831723 | Mar 1960 | GB |
2182706 | May 1987 | GB |
Number | Date | Country | |
---|---|---|---|
20170356221 A1 | Dec 2017 | US |
Number | Date | Country | |
---|---|---|---|
62348427 | Jun 2016 | US |