The invention relates to a motor vehicle subassembly.
A motor vehicle subassembly of this type comprises a steering wheel body of a motor vehicle steering wheel, an airbag module which can be fastened to the steering wheel body by means of a latching connection, and latching means for fastening the airbag module to the steering wheel body at at least two spaced apart fastening points. The airbag module is accordingly secured on the steering wheel body locally at a plurality of separate fastening points.
A motor vehicle subassembly of this type is disclosed, for example, in U.S. Pat. No. 5,775,725. A disadvantage of the known motor vehicle subassembly is that, in order to release the latching connection between the airbag module and steering wheel body, the latching connection has to be released at a plurality of fastening points, which requires a corresponding outlay.
The invention is based on the problem of providing a motor vehicle subassembly of the type mentioned at the beginning, in which the latching connection between the airbag module and steering wheel body can be cancelled in a simple manner.
This problem is solved according to the invention by the provision of a motor vehicle subassembly having features as described herein.
Accordingly, the latching means provided for fastening the airbag module to the steering wheel body are arranged and designed in such a manner that, after release of the latching means at one fastening point, the airbag module can be removed from the steering wheel body without actuating the latching means of the further fastening points separately. Rather, after release of the latching means at the one fastening point, the airbag module can be removed from the steering wheel body by a simple movement relative to the steering wheel body, in particular by displacing or pivoting it.
The solution according to the invention has the advantage that, in order to cancel the connection between the airbag module and steering wheel body, the latching means used for fastening the airbag module to the steering wheel body only have to be released at a single fastening point, and the connection can then be cancelled by simple movement of the airbag module.
In order to release the latching means at the one fastening point, an actuating element, for example in the form of a spring element, which preferably forms part of the latching connection can be provided there. To this end, the latching element, in the latched state, is supported on the actuating element and can be disengaged from the actuating element by moving, in particular displacing or pivoting, and, if appropriate, deforming the said actuating element, as a result of which the latching connection at the one fastening point is released. Expressed in another manner, the latching connection at the one fastening point is only in the latched state if the latching element is supported on the actuating element. Displacing or pivoting the actuating element from the position in which it can be used as a support for the latching element therefore enables the latching connection at the said fastening point to be released in a simple manner.
According to one embodiment of the invention, the actuating element is coupled not only to the one, but also to the further fastening points of the latching connection, with it also being possible for provision to be made at these further fastening points for the latching elements there to be supported in each case on the actuating element. In this case, it is envisaged that release of the latching connection at the one fastening point also enables the latching connections at the further fastening points to be released by means of the actuating element. This is achieved by a movement of the actuating element leading to the release of the latching connection at the one fastening point having the effect of moving further sections of the actuating element through which the latching connection at the further fastening points is released. There is thus a direct connection (positive coupling) between the movement of the actuating element at the one fastening point and at the further fastening points, specifically in such a manner that the latching connections at all of the fastening points can be released simultaneously if the actuating element is moved in a suitable manner. The actuating element is preferably designed here as a latching hoop which extends from the one fastening point to the further fastening points.
According to another variant of the invention, the further fastening points are configured in such a manner that the latching connection can be cancelled there by means of a movement of the airbag module relative to the steering wheel body after the latching connection at the one fastening point has been released. If the latching connection at the one fastening point has not yet been cancelled, the said fastening point prevents the said relative movement of the airbag module, with the result that the latter, in the latched state of the latching connection at the one fastening point, cannot be removed from the steering wheel body. In order to be able to take on a function here as a stop, the actuating element is preferably supported on at least one bearing surface of the steering wheel body. The further fastening points can be assigned openings, for example in the form of a respective slot, which make it possible for the airbag module to be removed from the steering wheel body by means of a relative movement along a certain direction, with it being possible for the said direction to be predetermined, for example, by means of the direction of extent of the slots.
The latching means can be formed at the individual fastening points in each case by means of separate latching elements, in particular in the form of latching hooks, which engage in a respectively assigned latching opening.
Furthermore, elastic means can be provided via which the airbag module is supported under prestress on the steering wheel body. These elastic means can be formed in a simple manner by individual elastic elements at the respective fastening points, with the elastic elements preferably being arranged on the latching elements at the respective fastening points. For this purpose, the elastic elements can in each case be helical springs which are pushed over the latching elements.
The elastic elements enable the latching means, in particular in the form of individual latching elements, to be clamped in their respective latching position, with the result that the latching connection can only be released by a movement of the actuating element perpendicular with respect to the direction of the prestress.
Further features and advantages of the invention will become clear in the following description of exemplary embodiments with reference to the figures, in which:
a and 4b each show a detail from
The module carrier 2 is formed by a main body 20 which is of flat design and from which three latching, elements 25 protrude vertically in the form of latching hooks which can be introduced into a respectively assigned fastening opening 15 of the steering wheel body 2. Arranged in each case on the latching hooks 25 are elastic elements (compression springs) in the form of helical springs 5 via which the main body 20 of the module carrier 2 is supported resiliently on the main body 10 of the steering wheel body 1. The prestressing force of the elastic elements which are arranged on the latching hooks 25 between the two main bodies 1, 2 and are in the form of helical springs 5 also result in the latching connection formed by the latching hooks 25 in the assigned fastening openings 15 being clamped in place and thus counteracts release of the latching connection.
As can be seen in particular with reference to
The depression 13 in the steering wheel body 1 and the spring element 3 having the hoop-shaped main body 30 are designed in such a manner that two of the fastening points 15, 25, comprising in each case a latching hook 25 having an assigned fastening opening 15, are arranged in the vicinity of an angled, free end section 31 of the spring element 3. In contrast, a fastening point 15, 25 is provided in the central region of the main body 30 of the spring element 3 between the two angled end sections 31.
In order to release the latching connection (illustrated in
The movement of the main body 30 of the spring element 3 along the displacement direction V perpendicular with respect to the direction in which the latching hook 25 is introduced and away from the side wall of the depression 13, against which the main body 30 bears, moreover, because the inwardly angled, free end sections 31 of the spring element 3 interact with the assigned wall sections 14 of the depression 13, has the result that, also in the region of the two further fastening points 15, 25, the main body 30 of the spring element 3 is moved perpendicular with respect to the direction in which the respective latching hook 25 is introduced and is moved inwards away from the wall 14 of the depression 13 in the radial direction R, so that the two further latching hooks 25 are also disengaged from the spring element 3. By this means, the latching connection is automatically also released at these two fastening points 15, 25, and the module carrier 2 of the airbag module can be removed in a simple manner from the main body 10 of the steering wheel body 1 by the latching hooks 25 being guided through the respectively assigned fastening opening 15. For this purpose, the fastening openings 15 are dimensioned in such a manner that the respective latching head 252 can be passed in a simple manner through the respective fastening opening 15 if it is not supported on the main body 30 of the spring element 3.
As a result, it is thus achieved that actuation of the latching connection, which is effective at all three fastening points 15, 25, at just one fastening point, specifically displacement of an actuating element in the form of a spring element 3 along a displacement direction V, enables the latching connection to be automatically released at all three fastening points. For this purpose, the one fastening point 15, 25 is coupled to the further fastening points 15, 25 via the actuating element in the form of the spring element 3.
A modification of the exemplary embodiment from
It should also first be mentioned that, in the case of the exemplary embodiment according to
In the case of the exemplary embodiment according to
It can furthermore be seen with reference to
It emerges from
It can be seen with reference to
In order to release the latching connection illustrated in
As a result, the effect also thus achieved in the case of the exemplary embodiment illustrated in
Number | Date | Country | Kind |
---|---|---|---|
202 06 310 U | Apr 2002 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
5380037 | Worrell et al. | Jan 1995 | A |
5470100 | Gordon | Nov 1995 | A |
5620201 | Ricks | Apr 1997 | A |
5775725 | Hodac et al. | Jul 1998 | A |
6196573 | Worrell et al. | Mar 2001 | B1 |
6572136 | Inoue et al. | Jun 2003 | B1 |
20020043786 | Schutz | Apr 2002 | A1 |
20020153714 | Kreuzer | Oct 2002 | A1 |
Number | Date | Country |
---|---|---|
200 17 527 | Mar 2001 | DE |
1 103 430 | May 2001 | EP |
1 167 132 | Jan 2002 | EP |
1 179 457 | Feb 2002 | EP |
2790044 | Aug 2000 | FR |
2336135 | Oct 1999 | GB |
2001-233159 | Aug 2001 | JP |
2002002433 | Jan 2002 | JP |
2002012112 | Jan 2002 | JP |
2002012117 | Jan 2002 | JP |
2002087284 | Mar 2002 | JP |
2002225661 | Aug 2002 | JP |
WO - 0047451 | Aug 2000 | WO |
Number | Date | Country | |
---|---|---|---|
20040017068 A1 | Jan 2004 | US |