Motor vehicle wheel hub bearing and a method for mounting the bearing onto a motor vehicle suspension

Information

  • Patent Grant
  • 6322253
  • Patent Number
    6,322,253
  • Date Filed
    Thursday, February 24, 2000
    24 years ago
  • Date Issued
    Tuesday, November 27, 2001
    23 years ago
Abstract
A motor vehicle wheel hub bearing comprises an outer race to be mounted in a cylindrical seat formed in a suspension strut and fixed in the seat by cold rolling. The outer race has an outer cylindrical surface to be fitted into the seat. The cylindrical surface extends over the whole axial dimension of the outer race and has a greater axial dimension than that of the strut. The two axially opposite ends of the cylindrical surface comprise respective axial tubular projections adapted to be deformed radially outwardly by cold forming towards respective opposite lateral surfaces of the strut so as to fix the bearing to the strut.
Description




The present invention relates to a motor vehicle wheel hub bearing, of the type identified in the preamble of claim


1


. The invention further relates to a method for mounting the bearing on the suspension strut of a motor vehicle.




A bearing of the said type, known from European Patent Application EP-A-0 794 072 is illustrated in FIG.


1


. With reference to

FIG. 1

, a bearing generally indicated


1


comprises a radially outer race


2


which has two rolling raceways for respective sets of rolling balls


3


. The balls can rotate on radially inner raceways


4


and


5


which are mounted on a flanged hub


6


fixed for rotation in a known way to an axle


7


.




The outer race


2


includes an annular main portion


6


which extends to only one axially inner side (that is to say facing towards the interior of the vehicle) forming an axial tubular projection


10


which defines, with the main annular portion


9


, an axial abutment shoulder


11


able to abut against the outer lateral surface


12


of the strut


13


.




A cylindrical seat


14


is formed in the strut


13


, into which the outer cylindrical surface


15


of the tubular projection


10


is force fitted. This tubular projection has an axial dimension greater than the axial thickness of the strut


13


, in such a way that the axially inner rim of the tubular projection


10


can be folded and radially outwardly deformed against the axially inner lateral surface


16


of the strut


13


by means of a cold-rolling plastic deformation operation, to obtain a rolled edge


17


which thus axially fixes the bearing onto the suspension strut.




This arrangement, which is advantageous as it makes it possible to fix the bearing onto the suspension without causing deformations in the region of the raceways of the outer race of the bearing, does, however, have a disadvantage due to the fact that it requires very accurate mechanical finishing in particular for the formation of the shoulder


11


. The outer race of the bearing is moreover made heavier by that portion of the material which forms the said shoulder.




An object of the invention is to provide a bearing of the above-identified type, having an outer race of less weight and which involves, for its finishing, a simpler and more rugged turning operation, which is therefore economically advantageous.




Another object of the invention is to provide a bearing in which the material from which it is made is utilized in an optimal manner.




A yet further object is to center a bearing in an improved and more “flexible” manner on the motor vehicle suspension.




These objects are achieved according to the present invention by a bearing for a motor vehicle wheel hub, comprising an outer race adapt to be mounted in a cylindrical seat formed in a suspension strut and fixed in the said seat by cold forming, said outer race having:




a main annular portion forming raceways for rolling elements;




an outer cylindrical surface to be fitted in said seat; wherein said cylindrical surface extends over the whole axial dimension of the outer race and has an axial dimension greater than that of the strut, and wherein the two opposite axial ends of said cylindrical surface comprise respective axial tubular projections extending from said main portion; said tubular projections being dimensioned so that their ends can be plastically deformed by cold forming radially outwardly towards respective opposite lateral surfaces of the strut so as to fix the bearing to the strut.




According to another aspect of the invention, these objects are achieved by a method for mounting a motor vehicle wheel hub bearing to a suspension strut, the method comprising the following steps:




(a) providing a suspension strut having an axial cylindrical seat extending between two opposite lateral surfaces;




(b) providing a bearing comprising an outer race having:




a main annular portion forming raceways for rolling elements; and




an outer cylindrical surface adapted to be inserted into said seat of the strut, said cylindrical surface extending over the whole axial dimension of the outer race and having a greater axial dimension than the axial thickness of the strut; the two opposite axial ends of the cylindrical surface comprising respective axial tubular projections extending from said main portion;




(c) inserting the outer ring into said seat of the strut in such a way as to leave opposite end portions of the tubular projections projecting beyond said opposite lateral surfaces by predetermined distances;




(d) cold forming said end portions in radially outwardly directions towards the said respective opposite lateral surfaces o f the strut, thereby forming deformed edges which fix the bearing to the strut.




Further important characteristics of the invention are specified in the dependent claims.











The characteristics and advantages of the present invention will become apparent from the detailed description of various embodiments thereof, given with reference to the attached drawings, given by way of non-limiting example, in which:





FIG. 1

is a vertical axial section of a prior art wheel hub bearing mounted on a motor vehicle strut;





FIG. 2

is a partial axial section of a detail of the bearing of

FIG. 1

;





FIG. 3

is an axial sectional view of a motor vehicle wheel hub having a bearing according to the present invention fixed to the suspension strut of a motor vehicle;





FIG. 4

is a view in axial section of the outer race of the bearing of

FIG. 3

;





FIG. 5

illustrates a mounting phase of the bearing onto the suspension; and





FIG. 6

is a partial view in axial section of a forged blank from which an outer race for a bearing according to the invention is formed.











Referring to

FIGS. 3 and 4

, and utilizing the same reference numerals already adopted for

FIG. 1

, a bearing according to the present invention comprises a radially outer race


2


, described in more detail below, a pair of radially inner races or half-races


4


to


5


, and two sets of rolling elements


3


, in this example balls, radially interposed between the outer race


2


and the inner half-races


4


and


5


.




With reference now in particular to

FIG. 4

, the outer race


2


comprises a central main annular portion


9


in which the raceways are formed for the rolling elements


3


. The outer race


2


has an outer cylindrical surface


18


adapted to be inserted in a cylindrical seat


14


formed in the strut


13


of a suspension. Preferably, the seat


14


and the cylindrical surface


18


are so dimensioned as to provide some radial interference requiring a forced fitting of the bearing in the strut, to obtain a better locking of the bearing.




The outer surface


18


extends over the whole of the axial dimension of the outer race


2


and has a greater axial dimension than that of the strut


13


.




The two axially opposite ends of the cylindrical surface


18


comprise respective axial tubular opposite end projections


19


and


20


which extend from the central main portion


9


; the tubular projections


19


and


20


are shaped and outwardly dimensioned to be plastically deformed, cold, preferably by being rolled radially outwardly towards the inner and outer lateral surfaces


16


and


12


of the strut


13


so as to assume the configuration illustrated in

FIG. 3

, and in broken outline in

FIG. 4

, as indicated by the reference numerals


19




a


and


20




a.






Preferably, the radially inner races


4


and


5


have an overall axial dimension not greater than the axial thickness s of the strut


13


.




The sequence of operations for mounting the bearing onto the strut provides that the complete bearing of outer race, inner race and rolling elements is inserted into the seat


14


of the strut. In the preferred embodiment, in which there is provided some radial interference between the surface


18


of the outer race


2


and the seat


14


of the strut, the outer race


2


is inserted forcibly. The insertion could for example by effected by means of a tool


21


schematically illustrated in

FIG. 5

which has a first axial abutment surface


22


and a second axial abutment surface


23


, axially spaced from one another by a predetermined distance e.




The first abutment surface


22


presses the outer, undeformed face


24


of the axially outer extension


20


in the axial direction indicated by the arrow A until the second axial abutment surface


23


engages against a reference surface


25


fixed to the strut, in this case represented by a zone


12


of the outer surface of the strut close to the cylindrical seat


14


.




The distance e is predetermined in such a way that in the abutment configuration the ends of the tubular projections


19


and


20


project, in the undeformed condition before rolling, by respective distances e′ and e″ beyond the lateral surfaces


16


and


12


of the strut. The distances e′ and e″ can be the same or slightly different depending on requirements, thus making it possible to fix the bearing to the strut in a plurality of different axial positions. In each case the distances by which the said undeformed ends project beyond the lateral surfaces of the strut will be such as to allow the formation of corresponding rolled edges


19




a


and


20




a


effective in axially fixing of the bearing onto the strut.




The rolling operations can be equally well performed simultaneously on both projections or, alternatively, in two successive steps, resisting axial movement of the outer race


2


by means of the same tool


21


utilized to determine the desired axial position of the outer race with respect to the strut.




In the preferred embodiment of the method according to the invention, the deformed edges


19




a


and


20




a


each have an axial thickness b less than or equal to the radial thickness t of the tubular projections


19


and


20


in their undeformed condition, as indicated in FIG.


4


.




For the purposes of improving the fixing of the bearing to the strut it is also advantageous to form a bend or a circumferentially curved connection


26


on the strut, in the connection region between the opposite lateral surfaces


16


,


12


and the cylindrical seat


14


, each preferably having an axial extent h not greater than 3 mm.




As may be appreciated, the outer race of the bearing according to the present invention is obtained from a forged blank of very much simpler form, as schematically indicated by the broken outline C in FIG.


6


. It will be noted that on the radially outer surface of the outer race it is not necessary to form with precision the conventional shoulder


11


of FIG.


2


.




Moreover, with particular reference to

FIG. 2

, the material conventionally used to form the reinforcement region


11




a


of the shoulder


11


is saved: as a consequence, the working operations will be expedited with respect to the prior art discussed in the introduction, in that the turning operation to obtain a cylindrical surface is simpler and faster.




In addition, the quantity of excess metal to remove from the partly worked workpiece will generally be less as will be apparent from comparison of the broken outlines in

FIGS. 2 and 6

.




Finally, the outer races obtained according to the invention are lighter and have an axially symmetrical structure so that they can be mounted indifferently with either of their faces being the frontal face thus simplifying mounting.




Naturally, the principle of the invention remaining the same, its details can be varied with respect to what has been described in the present example. In particular, it would be possible to form a plurality of radial recesses (or projections) in one or both lateral surfaces


12


and


16


of the strut, which would be interpenetrated by the folded material of one or both edges


19




a


or


20




a


so as to ensure fixing against possible rotation of the outer race with respect to the strut.



Claims
  • 1. A bearing for a motor vehicle wheel hub, comprising an outer race adapt to be mounted in a cylindrical seat formed in a suspension strut and fixed in the said seat by cold forming, said outer race having:a main annular portion forming raceways for rolling elements; an outer cylindrical surface to be fitted in said seat; wherein said cylindrical surface extends over the whole axial dimension of the outer race and has an axial dimension greater than that of the strut, and wherein the two opposite axial ends of said cylindrical surface comprise respective axial tubular projections extending from said main portion; said tubular projections being dimensioned so that their ends can be plastically deformed by cold forming radially outwardly towards respective opposite lateral surfaces of the strut so as to fix the bearing to the strut.
  • 2. The bearing of claim 1, wherein said main annular portion is substantially central.
  • 3. The bearing of claim 2, wherein said outer race has an axially symmetrical shape.
  • 4. The bearing of claim 1, wherein said tubular projections are dimensioned in such a way that in the undeformed condition before being cold formed their opposite ends extend beyond said lateral surfaces by respective distances so as to allow the bearing to be fixed to the strut in a plurality of axially different positions.
  • 5. The bearing of claim 1, comprising one or more radially inner races having an overall axial dimension not greater than the axial thickness of the strut.
Priority Claims (1)
Number Date Country Kind
T099A0142 Feb 1999 IT
US Referenced Citations (32)
Number Name Date Kind
1665437 Booth Apr 1928
1816643 Forsyth Jul 1931
2022041 Kliesrath Nov 1935
2153280 Shelor Apr 1939
2896519 Martin Jul 1959
2905279 Moyer Sep 1959
3403758 Stout Oct 1968
3583511 Asberg Jun 1971
3767221 Asberg Oct 1973
3884331 Asberg May 1975
4067621 Reppert Jan 1978
4270805 Spisak Jun 1981
4383588 Krude May 1983
4398775 Hofmann et al. Aug 1983
4544209 Braungart Oct 1985
4550809 Kawaguchi Nov 1985
4596312 Kawaguchi Jun 1986
4621700 Merkelbach Nov 1986
4708497 Lederman Nov 1987
4792020 Okumura et al. Dec 1988
4880281 Merkelbach Nov 1989
4913266 Russell et al. Apr 1990
5051003 Sasyama Sep 1991
5051004 Takeuchi et al. Sep 1991
5193917 Adler et al. Mar 1993
5215387 Bertetti et al. Jun 1993
5366279 Polka Nov 1994
5590967 Kapaan Jan 1997
5957590 Picca et al. Sep 1999
5975647 Pons et al. Nov 1999
5988324 Bertetti et al. Nov 1999
B1 4282952 Bartley Oct 1988
Foreign Referenced Citations (15)
Number Date Country
1 189 877 Mar 1965 DE
70 34 015 Sep 1970 DE
2635608 Feb 1978 DE
29 19 411 Nov 1980 DE
39 00 356 Jul 1990 DE
43 38 261 A May 1994 DE
0 156 552 Oct 1985 EP
371 836 Jun 1990 EP
680 836 Nov 1995 EP
703130 Mar 1996 EP
0794072A2 Sep 1997 EP
2 723 886 Mar 1996 FR
2 207 470 A Feb 1989 GB
TO94A000596 Jul 1994 IT
TO96A000387 May 1996 IT