This application claims priority to German Patent Application No. 10 2012 023 674.3, filed Nov. 28, 2012, which is incorporated herein by reference in its entirety.
The technical field relates to a motor vehicle with a modularly structured body.
From DE 10 2010 013 842 A1 a body structure for a motor vehicle is known, in which a model-specific spring strut mounting module is combined with body structure elements that are identical across models. The modification of the spring strut mounting module makes possible realizing wheel controls and chassis characteristics which differ from model to model. With the different spring strut mounting modules, different axle lengths would also be realizable in principle. Different body widths that are suitable for the axle length however cannot be realized with the known structure.
At least one object is to create a motor vehicle front part that makes possible realizing motor vehicles with different body widths with a low number of model-specific components. In addition, other objects, desirable features and characteristics will become apparent from the subsequent summary and detailed description, and the appended claims, taken in conjunction with the accompanying drawings and this background.
A motor vehicle front part is provided with a central front wall arranged between engine compartment and passenger cell, lateral front walls, each of which comprise first contact points for fastening to the central front wall and second contact points for fastening to a lateral sill structure, are provided in a plurality of models, which differ with respect to the spacing between first and second contact points measured in transverse direction of the motor vehicle body. The lateral front walls each comprise a baseplate, which in contrast with the central front wall, substantially stands perpendicularly on the vehicle transverse direction.
The first contact point connecting to the central front wall can be provided in a central region of the baseplate. In a first model of the lateral front wall, a lower marginal strip of the baseplate can form the second contact point. In a second model of the lateral front wall, a lower marginal strip forming the second contact point however is connected to the baseplate via an offset zone. As the offset zone is deflected against the baseplate towards the vehicle interior or to the outside, spacing of the sill structures which are smaller or larger than with the first model and thus also correspondingly different widths of the body of the vehicle according to the invention can be realized. On a front margin of the baseplate, a third contact point is provided for fastening a wheel installation housing.
In order to establish a large-area, flexurally rigid connection to the wheel installation housing, a flange can be angled off the front margin of the baseplate. The third contact point or the flange then extends preferentially arc-like along a wall of the wheel installation housing. Additionally, a rear marginal strip of the lateral front wall can be laterally offset against the baseplate for adapting to different body widths. A side wall structure of the motor vehicle is then preferentially fastened to this rear marginal strip.
The lower marginal strip and the rear marginal strip are laterally offset relative to the baseplate each in the same direction, possibly also to the same, in order to also realize a large (small) spacing of the side wall structures in the case of a body with large (small) spacing of the sill structure. The side wall structure can in particular comprise a front fender or a component, on which a front fender is directly or indirectly fastened, such as for example an outer wheel installation strut, a hinge pillar or at least parts of these.
The present invention will hereinafter be described in conjunction with the following drawing FIGS., wherein like numerals denote like elements, and:
The following detailed description is merely exemplary in nature and is not intended to limit application and uses. Furthermore, there is no intention to be bound by any theory presented in the preceding background or summary or the following detailed description.
The view of
Two side members 3 each have a middle portion 4, which in the FIG. is concealed for the greatest part, and which is welded to a lower region of the front wall 2 that obliquely drops towards the back, front portions 5 substantially projecting from the front wall 2 horizontally to the front and rear portions 6, which are provided in order to support a floor panel of the passenger compartment in the finish-assembled vehicle. The side members 3 each have a top hat-shaped cross section, whose concave side in its front portions 5 is laterally oriented to the outside and is closed off by an elongated plate 7 welded along upper and lower margins of the top hat cross section to the front portion 5. In the middle portion 4, the concave side of the side members faces the front wall 2, so that the front wall complements the side members 3 in the middle portion 4 into a hollow profile. In the rear portion 6, the concave side, as is evident in the FIG., faces upwards and in the finish-assembled state, closed off through the floor panel of the passenger cell which is not shown here.
A cross member 13 extends on the central front wall 2 between the two side members 3. The cross member 13 also has a substantially top hat-like cross section, wherein a concave side of the cross section faces the central front wall 2 and upper and lower welding flanges of the cross member 13 (of which in
Wheel installation struts 16 extend from the front tips of the side members 3 as far as into the vicinity of the lateral margins of the central front wall 2. A gap between them and the adjacent side members is each filled out by one of the wheel installation housings 12, except for an opening on the apex of the wheel installation housing 12, which is provided in order to receive a spring strut dome 33 (see
In order to realize motor vehicle bodies that are different in width with the help of the assembly shown in
From a lateral sill structure, which in the finished vehicle will limit the door opening towards the bottom, only a profile 22 of top hat-like cross section that is open towards the outside is shown in
The lateral front wall 17a is provided in order to be welded to a lateral margin of the central front wall 2 approximately along a dash-dotted line 25 on its side facing away from the beholder in
A lower marginal strip 27b is joined in one piece to the baseplate 18 via an offset zone 28b. The welding flange 23 is welded to the lower marginal strip 27b. On the rear margin of the lateral front wall 17b, a rear marginal strip 29 substantially extends vertically. It lies in a same plane with the marginal strip 27b and like the latter, is unitarily joined to the baseplate 18 via an offset zone 30b. The marginal strip 27b is offset against the baseplate 18 towards the vehicle interior. With given width of the front wall 2, a reduced spacing between the profiles 22 is obtained on the sides of the passenger cell of the finished vehicle if instead of the lateral front wall 17a of
Analogously, the lateral front wall 17c shown in
a shows the lateral front wall 17a, complemented by a few further components. These include a lateral window support 31, the angled-off front margin 32 of which comes to lie in a plane with the flange 19 which likewise supports the windshield later on, and a spring strut dome 33a, which in the inserted state covers the apex opening 36 of the wheel installation housing 12, and an extension piece 35, which extends the wheel installation strut 16 towards the back.
Since the wheel installation housing 12 and the wheel installation struts are model-independently identical and the spacing between the baseplates 18 is also model-independently the same, the shape of the apex opening 36 is also identical. The different models of the spring strut dome 33a, 33b, 33c shown in
The section plane of
While at least one exemplary embodiment has been presented in the foregoing summary and detailed description, it should be appreciated that a vast number of variations exist. It should also be appreciated that the exemplary embodiment or exemplary embodiments are only examples, and are not intended to limit the scope, applicability, or configuration in any way. Rather, the foregoing summary and detailed description will provide those skilled in the art with a convenient road map for implementing an exemplary embodiment, it being understood that various changes may be made in the function and arrangement of elements described in an exemplary embodiment without departing from the scope as set forth in the appended claims and their legal equivalents.
Number | Date | Country | Kind |
---|---|---|---|
10 2012 023 674 | Nov 2012 | DE | national |
Number | Name | Date | Kind |
---|---|---|---|
7048325 | Sandhu | May 2006 | B1 |
8596711 | Yasui et al. | Dec 2013 | B2 |
8876194 | Dix et al. | Nov 2014 | B2 |
20050046237 | Miyoshi et al. | Mar 2005 | A1 |
20060028054 | Dettinger et al. | Feb 2006 | A1 |
Number | Date | Country |
---|---|---|
19941907 | Mar 2000 | DE |
102006009902 | Sep 2007 | DE |
102010005835 | Jul 2011 | DE |
102010013842 | Oct 2011 | DE |
0297057 | Jun 1992 | EP |
1437291 | Jul 2004 | EP |
2011120682 | Oct 2011 | WO |
Entry |
---|
Intellectual Property Office, Search Report under Section 17 for United Kingdom Patent Application No. GB1319862.7, issued Apr. 15, 2014. |
German Patent Office, German Patent Search Report for Application No. 102012023674.3, mailed Aug. 14, 2013. |
Number | Date | Country | |
---|---|---|---|
20140159430 A1 | Jun 2014 | US |