The field of the present invention is that of electro-mechanical energy conversion devices. More particularly, the present invention relates to an application of electro-mechanical energy conversion devices in hybrid electric vehicles.
Many hybrid electrical vehicles have power trains wherein a reciprocating piston engine is torsionally connected with the vehicle wheels through an intervening motor generator. Typically in the drive train of a hybrid electric vehicle, the motor generator is torsionally connected to a crank shaft of the engine via a chain or a gear system. Accordingly, the motor generator is subjected to the inherent torsional spikes generated by the crank shaft of the reciprocal piston engine. Isolating the torsional spikes can reduce the peak load into the drive system of a vehicle and of the motor generator thus improving the NVH (noise, vibration and handling) and durability of the drive system. Typically, the torsional isolation is provided by either a torsion bar or a torsional damper. Typically, when a torsion bar is utilized, increased axial spacing is required for the portion of the drive train between the engine and the motor generator. If a proposed overall required length of the drive train is found to be undesirable, then a radial spring type damper is utilized. However, most radial spring dampers are relatively large in their radial dimensions as compared with the radial dimensions of an armature shaft of a motor generator. In hybrid electric vehicles, as in most vehicles, it is desirable to make the power train occupy a space as small as possible to comply with other aerodynamic requirements of the vehicle. Accordingly, it is desirable to provide a hybrid electric vehicle wherein a reciprocating piston engine can be torsionally connected with a motor generator while providing maximum torsional isolation between the reciprocating piston and the motor generator. It is desirable to provide the above in as small of a space as possible.
To make manifest the above noted and other desires, a revelation of the present invention is brought forth. In a preferred embodiment, the present invention provides an electro-mechanical energy conversion device having an armature with a generally central cavity. The armature is rotatably mounted in a frame. A torsion bar is positioned within the armature central cavity. The torsion bar has a first end torsionally connected with the armature adjacent an end of the armature. The torsion bar has a second end for transmission of torsional force between the electro-mechanical energy conversion device and an energy source or consuming object such as a reciprocating piston engine or vehicle drive train. The electro-mechanical energy conversion device of the present invention is advantageous in that it provides a high degree of torsional isolation in a small space envelope.
Further areas of applicability of the present invention will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples, while indicating the preferred embodiment of the invention, are intended for purposes of illustration only and are not intended to limit the scope of the invention.
The present invention will become more fully understood from the detailed description and the accompanying drawings, wherein:
The following description of the preferred embodiment(s) is merely exemplary in nature and is in no way intended to limit the invention, its application, or uses.
The electro-mechanical energy conversion device 7 according to the present invention has a frame 10. The frame 10 includes two end caps 12. The end caps 12 mount roller bearings 14. The roller bearings 14 rotatably mount an armature 16. The armature 16 has a central cavity 18. The electro-mechanical device is typically a variable speed motor generator. Positioned within the central cavity 18 of the armature is a torsion bar 20. The torsion bar 20 can be a solid member or it may be tubular. Typically, the torsion bar will be metallic. The torsion bar has a first end 22. The torsion bar is torsionally connected with the armature 16 generally adjacent the torsion bar first end 22. Typically, the torsion bar first end 22 will be press fitted or spline connected to the armature 16. A pin 24 is also provided which typically only connects to the torsion bar 20 axially within the armature 16. As used in the present description, the end of the armature essentially means that that portion of the armature adjacent to the end cap 12. As is apparent to those skilled in the art, the armature at its end 26 in many applications will be extended to provide an alternate torsional connection with a drivetrain of a hybrid electric vehicle or other device that the electro-mechanical energy conversion device 7 is being utilized with.
Adjacent a second end 28 of the armature, a torsion bar has a second end 30. The torsion bar second end 30 is torsionally connected with a torsional transmission member which is typically a sprocket, gear or a belt drum. In most applications, the torsional force transmission member 32 will be a sprocket. The sprocket is operatively associated with a chain (shown schematically) 34 which is engaged with another sprocket 36. Sprocket 36 is torsionally connected with a crank shaft 38 of a reciprocating piston engine 40 (shown schematically).
At the second end 28 of the armature is a mounted bearing 44. The bearing 44 will typically have a press fit with the central cavity 18 of the armature while having a generally smooth non-interference fit with the torsion bar 20 to support the torsion bar 20 adjacent its second end 30. Captured between the outer surface of the torsion bar 20 and the inner cavity 18 of the armature, is a damping material 48. The damping material 48 will typically be an elastomeric material such as soft rubber, or other suitable alternatives. In some applications, it may be desirable to the damping material 48 to be connected of the outer surface of the torsion bar 20 but only be frictionally engaged with the central cavity 18 of the armature. In other embodiments the damping material will be connected with the armature and have sliding or rubbing contact with the torsion bar.
In operation, when the electro-mechanical energy conversion device 7 operates as a generator in a drivetrain of a hybrid electric vehicle, power from the reciprocating piston internal combustion engine 40 will come out of crank shaft 38 and via sprocket 36, chain 34 and sprocket 32 will provide a torsional input into the second end 30 of a torsion bar 20. The torsion bar will then transmit torsional power to its first end 22 wherein the torsional input will then be transferred to the armature end 26. Torsional isolation is provided by the torsion bar which can twist relative to the armature and is allowed to freely do so by the bearing 44. The above noted action alone provides torsional isolation. The torsional isolation is further enhanced by torsional damping provided the soft rubber 48 which is captured between the surface of the torsion bar 20 and the armature inner cavity 18. Typically the chain 34 is also connected with another sprocket (not shown) which powers a portion of the vehicle drive train down stream the electro-mechanical energy conversion device 7. When the electro-mechanical energy conversion device 7 is operating as a motor (especially in times of initial start-up of a hybrid electric vehicle wherein the engine 40 may not be engaged) torsional power will be transferred from the electro-mechanical energy conversion device 7 to another portion of the vehicle drive train. Typically the angular direction of rotation of the armature 16 when the device 7 is acting as a generator is common with the direction of rotation when acting as a motor. It is sometimes desirable for the torsional damping to be greater when the device 7 is acting as a generator than as a motor. In an alternative embodiment of the device 7 shown in
Referring to
Referring to
The description of the invention is merely exemplary in nature and, thus, variations that do not depart from the gist of the invention are intended to be within the scope of the invention. Such variations are not to be regarded as a departure from the spirit and scope of the invention.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2010/028099 | 3/22/2010 | WO | 00 | 9/15/2011 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2010/111164 | 9/30/2010 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1275029 | Holy | Aug 1918 | A |
1612321 | Soderberg | Dec 1926 | A |
2437954 | Havill | Mar 1948 | A |
2703847 | Kalikow | Mar 1955 | A |
3673813 | Wright | Jul 1972 | A |
4012923 | Lundgren | Mar 1977 | A |
4172985 | Meier | Oct 1979 | A |
4432245 | Hattori et al. | Feb 1984 | A |
4825718 | Seifert et al. | May 1989 | A |
5328408 | Wolf et al. | Jul 1994 | A |
5352157 | Ochs et al. | Oct 1994 | A |
6834737 | Bloxham | Dec 2004 | B2 |
7252060 | Mott | Aug 2007 | B2 |
7503431 | Sperber et al. | Mar 2009 | B2 |
20050116403 | Wellman | Jun 2005 | A1 |
20070272472 | Matsubara et al. | Nov 2007 | A1 |
20100307173 | Guo et al. | Dec 2010 | A1 |
Number | Date | Country |
---|---|---|
0411600 | Feb 1991 | EP |
1300926 | Sep 2003 | EP |
61-135345 | Jun 1986 | JP |
2002-317646 | Oct 2002 | JP |
3888148 | Feb 2007 | JP |
Entry |
---|
International Search Report and Written Opinion for Application PCT/US2010/028099 Filed on Oct. 19, 2010. |
Number | Date | Country | |
---|---|---|---|
20120007454 A1 | Jan 2012 | US |
Number | Date | Country | |
---|---|---|---|
61211258 | Mar 2009 | US |