The present application claims priority from Japanese patent application JP 2021-068152 filed on Apr. 14, 2021, the entire content of which is hereby incorporated by reference into this application.
The present disclosure relates to an interior permanent magnet motor having a rotor with permanent magnets embedded therein.
Conventionally, an invention relating to an electric motor and a rotor thereof is known (see JP 2010-283978 A below). Such a conventional rotor of the electric motor includes a shaft as a rotating axis, a yoke formed on the outer circumference of the shaft and rotating integrally with the shaft, and a plurality of rare-earth permanent magnets arranged at regular intervals in the circumferential direction of the outer circumference of the yoke. The plurality of rare-earth permanent magnets are arranged so as to be separated from each other at predetermined intervals, and a bonded magnet is molded on the outer circumference of the yoke so as to be integrated with the rare-earth permanent magnet (JP 2010-283978 A, Abstract, paragraph 0007, claim 1, etc.).
According to this conventional rotor, rare-earth permanent magnets capable of generating strong magnetic force are arranged so as to be separated from each other at predetermined intervals, and a bonded magnet is molded so as to be integrated with the rare-earth permanent magnet. Therefore, even if there are individual differences in the rare-earth permanent magnets, the bonded magnet molded so as to be integrated with the rare-earth permanent magnet can suppress the torque fluctuation due to the individual difference or positional deviation of the rare-earth permanent magnet (JP 2010-283978 A, paragraph 0008, etc.).
Conventionally, also an invention relating to a magnetic generator for an electric motor is known (see JP 2019-30207 A below). Such a conventional magnetic generator for an electric motor is applied to an electric motor including a plurality of magnets arranged on the positions opposed to the winding and capable of performing relative operation to the winding by energization of the winding, in which the plurality of magnets are arranged so as to alternate their polarities in an operation direction of the relative operation (JP 2019-30207 A, Abstract, claim 1, paragraph 0011, etc.).
These magnets include a first magnet portion provided as a pair of magnets in a state where the magnets are spaced from each other on the opposite sides of a d-axis as a center of the magnetic pole and a second magnet portion provided at the ends of the pair of magnets in the first magnet portion adjacent to the d-axis. In the first magnet portion, a magnetization direction inside of the magnet is inclined with respect to the d-axis, and is configured to intersect the d-axis at a position close to the winding, out of the position close to the winding and the position opposite to the winding. In the second magnet portion, a magnetization direction is configured to intersect the magnetization direction of the first magnet portion.
With such a configuration, the aforementioned conventional magnetic generator for an electric motor can enhance the magnetic flux of the end of the first magnet portion with the second magnet portion. Therefore, the demagnetization resistance against the mutual interference of the magnetic flux in the vicinity of the d-axis is increased, and the demagnetization of the first magnet portion can be appropriately suppressed (JP 2019-30207 A, paragraph 0012).
Generally, conventional IPM (Interior Permanent Magnet) motors need to have a larger amount of magnets in order to increase both a magnetic torque, which largely depends on the quantity of magnetic flux of magnets, and a reluctance torque, which is generated due to the difference in the inductance between the q-axis and the d-axis. Increasing the amount of magnets may reduce the strength of the motor due to a thinner rotor or may cause an increase in the physical size of the motor.
The present disclosure provides a motor capable of increasing a torque while suppressing an increase in the physical size of the motor.
One aspect of the present disclosure is a motor including a rotor and a stator disposed around the rotor. The rotor includes: a plurality of pairs of magnet slots evenly spaced in a circumferential direction of the rotor, each pair of magnet slots being arranged in a V-shape opening outward in a radial direction of the rotor; a plurality of pairs of main magnets housed in the plurality of pairs of magnet slots with their polarities alternately reversed in the circumferential direction so that a north pole and a south pole alternately face outward in the radial direction; and a plurality of auxiliary magnets including an outer magnet housed in an outer end in the circumferential direction in each of the pairs of magnet slots. At least one of a first condition or a second condition is satisfied. The first condition is that the main magnets are sintered magnets and the auxiliary magnets are bonded magnets and the second condition is that magnetization directions of the main magnet and the outer magnet housed in a same one of the magnet slots intersect outside in the radial direction so as to define an acute angle.
With such a configuration, when the first condition is satisfied, the motor of the above aspect can omit a resin mold for fixing the main magnet, and can fix the main magnet by filling a bonded magnet into the magnet slot instead of using the resin mold. Therefore, according to the motor satisfying the first condition, by replacing the resin mold with the bonded magnet, the rotor does not need to be thinner or larger in size for the arrangement of the auxiliary magnets, and thus it is possible to increase a magnetic torque while suppressing an increase in the physical size of the motor.
In addition, when the second condition is satisfied, the motor of the above aspect can increase a magnetic torque as compared to the case where the second condition is not satisfied. That is, by defining the magnetization directions of the main magnet and the auxiliary magnet, the motor satisfying the second condition can increase a magnetic torque without increasing a magnet amount as compared to the motor not satisfying the second condition. Therefore, the motor satisfying the second condition can increase a magnetic torque while suppressing an increase in the physical size of the motor.
In addition, in the motor of the above aspect, the second condition may be satisfied, the plurality of auxiliary magnets may include a plurality of inner magnets housed in inner ends in the circumferential direction in each of the pairs of magnet slots, and the main magnet and the inner magnet housed in the same one of the magnet slots may be magnetized in the same direction. With such a configuration, the motor of the above aspect can increase a magnetic torque of the motor with the inner magnets. In addition, when the first condition is further satisfied, the motor of the above aspect can fix the main magnet by filling a bonded magnet into the magnet slot instead of using the resin mold, and increase a magnetic torque while suppressing an increase in the physical size of the motor, as described above.
In addition, in the motor of the above aspect, only the first condition may be satisfied, and the main magnet and the outer magnet housed in the same one of the magnet slots may be magnetized in the same direction. The outer magnet disposed at the outer end in the circumferential direction in each pair of the magnet slots has a larger contribution to the torque as compared to the auxiliary magnet disposed in a different position. Therefore, even if the main magnet and the outer magnet are magnetized in the same direction, the motor of the above aspect can increase a magnetic torque while suppressing an increase in the physical size of the motor by replacing the resin mold with the bonded magnet.
In addition, in the motor of the above aspect satisfying only the first condition, the plurality of auxiliary magnets may include a plurality of inner magnets housed in inner ends in the circumferential direction in each of the pairs of magnet slots, and the main magnet and the inner magnet housed in the same one of the magnet slots may be magnetized in the same direction. With such a configuration, the motor of the above aspect can increase a magnet amount and increase a magnetic torque while suppressing an increase in the physical size of the motor by replacing the resin mold with the inner magnet that is the bonded magnet.
In the motor of the above aspect satisfying the first condition, the magnet slots each may include extended portions at opposite ends thereof in the circumferential direction, and bonded magnets may be housed in at least part of the extended portions. With such a configuration, the motor of the above aspect can increase a magnetic torque while suppressing an increase in the physical size of the motor by filling the bonded magnet into the space of the extended portion or replacing the resin mold to be filled into the extended portion with the bonded magnet. In addition, since an uncured bonded magnet can be filled into the extended portion, the motor of the above aspect can house the auxiliary magnet, without a gap, in the extended portion having a complex shape.
According to the present disclosure, it is possible to provide a motor capable of increasing a torque while suppressing an increase in the physical size of the motor.
Hereinafter, embodiments of the motor according to the present disclosure will be described with reference to the drawings.
The motor 100 of the present embodiment is an IPM (Interior Permanent Magnet) motor that is mounted on vehicles, such as hybrid vehicles, electric vehicles, or hydrogen vehicles, for example, and generates a driving force for traveling the vehicles. The motor 100 includes, for example, a rotary shaft 110, a rotor 120 fixed to the rotary shaft 110, a stator 130 disposed around the rotor 120, and a housing 140 for housing the rotor 120 and the stator 130.
The rotor 120 has a cylindrical shape, for example. The stator 130 has an annular or cylindrical shape, for example, and is disposed on the outside of the rotor 120 in the radial direction so as to surround the rotor 120. The rotor 120 and the stator 130 are disposed coaxially with each other, and the outer circumferential surface of the rotor 120 and the inner circumferential surface of the stator 130 face each other in the radial direction. A predetermined air gap is formed between the outer circumferential surface of the rotor 120 and the inner circumferential surface of the stator 130.
The housing 140 includes a pair of housing members 141, 142 having a closed-bottomed cylindrical shape, for example. The pair of housing members 141, 142 is fastened and integrated with each other by a fastening member such as a bolt 143, for example, in a state where their openings are bonded together. The housing 140 has bearings 144, 145 for rotatably supporting the rotary shaft 110 and the rotor 120.
As shown in
The rotor core 124 is formed in a substantially cylindrical shape by stacking a large number of electromagnetic steel plates, and has a through-hole 125 at its center. The rotary shaft 110 is fitted into the through-hole 125 of the rotor core 124, whereby the rotor core 124 is fixed to the rotary shaft 110. More specifically, the large number of electromagnetic steel plates forming the rotor core 124 are fixed to the rotary shaft 110 by, for example, swaging, welding, an adhesive, a projection and recess structure such as a key and keyway, spline, etc., or press-fitting or the like.
The stator 130 includes a cylindrical stator core 131 including the large number of stacked electromagnetic steel plates, for example. The stator core 131 includes a plurality of slots 132 evenly spaced in the circumferential direction. The slot 132 penetrates the stator core 131 in the axial direction. In the slot 132, a 3-phase stator winding 133 is wound and disposed, for example. In the present embodiment, for example 48 slots 132 are evenly spaced in the circumferential direction such that the 3-phase stator windings 133 corresponding to the number of magnetic poles of the rotor 120 are housed therein.
As will be described in detail later, the motor 100 according to the present embodiment is characterized in that at least one of a first condition or a second condition is satisfied. The first condition is that the main magnets 122 are sintered magnets and the auxiliary magnets 123 are bonded magnets. The second condition is that magnetization directions of the main magnet 122 and the outer magnet 123a included in the auxiliary magnet 123 that are housed in the same magnet slot 121 intersect outside in the radial direction so as to define an acute angle.
The plurality of pairs 121P of the magnet slots 121, each pair 121P of the magnet slots 121 being arranged in a V-shape opening outward in the radial direction of the rotor 120, are evenly spaced in the circumferential direction of the rotor 120. Each magnet slot 121 has a rectangular shape as viewed in the axial direction of the rotary shaft 110 and includes extended portions 121a at the opposite ends thereof in the circumferential direction of the rotor 120. The extended portion 121a extends in the longitudinal direction and the transverse direction of the rectangular magnet slot 121, for example.
The plurality of pairs 122P of the main magnets 122 are housed in the plurality of pairs 121P of the magnet slots 121 with their polarities alternately reversed in the circumferential direction so that the north pole and the south pole alternately face outward in the radial direction. The pair 122P of the main magnets 122 having the north pole facing outward in the radial direction is disposed asymmetrically with respect to the north pole center line Nc extending in the radial direction of the rotor 120. The pair 122P of the main magnets 122 having the south pole facing outward in the radial direction is disposed asymmetrically with respect to the south pole center line Sc extending in the radial direction of the rotor 120. The main magnets 122 are permanent magnets. Examples of the main magnets 122 may include rare-earth sintered magnets, such as neodymium magnets or samarium magnets, ferrite magnets, FCC magnets, or alnico magnets.
The plurality of auxiliary magnets 123 are housed in the extended portions 121a of the magnet slots 121, for example. The plurality of auxiliary magnets 123 include a plurality of outer magnets 123a housed in the outer ends in the circumferential direction in each pair 121P of the magnet slots 121. In addition, in the example shown in
Furthermore, in the example shown in
In addition, in the example shown in
Here, the magnetization direction of the bonded magnet can be controlled by filling a mixture of magnetic particles or powder and a binder, such as a resin, into the magnet slot 121 and then curing the mixture while applying a magnetic field in a direction equal to the magnetization direction, for example. It should be noted that a method for controlling the magnetization direction of the bonded magnet is not particularly limited as long as the magnetization direction of the bonded magnet can be controlled in a desired direction. For example, the bonded magnet may be formed into the shape of the magnet slot 121 beforehand and magnetized in a predetermined direction, and then inserted into the magnet slot 121.
In the example shown in
In other words, in Modification 1 of the motor 100 shown in
In other words, in Modification 2 of the motor 100 shown in
As shown in
As shown in
Hereinafter, the functions of the motor 100 according to the present embodiment and the motors 100 according to its Modification 1 to Modification 3 will be described.
The motor 100 of the present embodiment includes the rotor 120 and the stator 130 disposed around the rotor 120. The rotor 120 includes the plurality of pairs 121P of the magnet slots 121, the plurality of pairs 122P of the main magnets 122, and the plurality of auxiliary magnets 123. The plurality of pairs 121P of the magnet slots 121, each pair 121P of the magnet slots 121 being arranged in a V-shape opening outward in the radial direction of the rotor 120, are evenly spaced in the circumferential direction of the rotor 120. The plurality of pairs 122P of the main magnets 122 are housed in the plurality of pairs 121P of the magnet slots 121 with their polarities alternately reversed in the circumferential direction so that the north pole and the south pole alternately face outward in the radial direction. The plurality of auxiliary magnets 123 include the outer magnets 123a housed in the outer ends in the circumferential direction in each pair 121P of the magnet slots 121. The motor 100 of the present embodiment satisfies at least one of the first condition that the main magnets 122 are sintered magnets and the auxiliary magnets 123 are bonded magnets or the second condition that the magnetization directions of the main magnet 122 and the outer magnet 123a housed in the same magnet slot 121 intersect outside in the radial direction so as to define an acute angle θ.
The motors 100 according to the first embodiment and Modification 1 to Modification 3 satisfying the first condition can omit a resin mold for fixing the main magnet 122, and can fix the main magnet 122 by filling a bonded magnet into the magnet slot 121 instead of using the resin mold. That is, since the motor 100 satisfying the first condition replaces the resin mold with the bonded magnet, the rotor 120 does not need to be thinner or larger in size for the arrangement of the auxiliary magnets 123. Therefore, while suppressing an increase in the physical size of the motor, the motor 100 satisfying the first condition can increase a magnetic torque as compared to the motor according to the comparative example not including the auxiliary magnet 123 as shown in
In addition, the motor 100 according to Modification 3 satisfying the second condition can increase a magnetic torque as compared to the motor 100 according to the first embodiment not satisfying the second condition as shown in
In addition, in the motor 100 according to Modification 3 satisfying the second condition, the plurality of auxiliary magnets 123 include the plurality of inner magnets 123b housed in the inner ends in the circumferential direction in each pair 121P of the magnet slots 121 as shown in
With such a configuration, the motor 100 according to Modification 3 can increase a magnetic torque with the inner magnets 123b as shown in
In addition, in the motors 100 according to the first embodiment, Modification 1, and Modification 2 satisfying only the first condition, the main magnet 122 and the outer magnet 123a housed in the same magnet slot 121 are magnetized in the same direction as shown in
In the motors 100 according to the first embodiment, Modification 1, and Modification 2, the outer magnet 123a disposed at the outer end in the circumferential direction in each pair 121P of the magnet slots 121 has a larger contribution to the torque as compared to the auxiliary magnet 123 disposed in a different position. Therefore, even if the main magnet 122 and the outer magnet 123a are magnetized in the same direction, the motors 100 according to the first embodiment, Modification 1, and Modification 2 can increase a magnetic torque while suppressing an increase in the physical size of the motor by replacing the resin mold with the bonded magnet.
In addition, in the motors 100 according to the first embodiment and Modification 1, the plurality of auxiliary magnets 123 include the plurality of inner magnets 123b housed in the inner ends in the circumferential direction in each pair 121P of the magnet slots 121 as shown in
With such a configuration, the motors 100 according to the first embodiment and Modification 1 can increase a magnet amount and increase a magnetic torque while suppressing an increase in the physical size of the motor by replacing the resin mold with the inner magnet 123b that is the bonded magnet.
In addition, in the motors 100 according to the first embodiment and Modification 1 to Modification 3, each magnet slot 121 includes the extended portions 121a at its opposite ends in the circumferential direction, and the auxiliary magnets 123 that are bonded magnets are housed in at least part of the extended portions 121a as shown in
With such a configuration, the motors 100 according to the first embodiment and Modification 1 to Modification 3 can fill the bonded magnets into the spaces of the extended portions 121a or replace the resin mold to be filled into the extended portion 121a with the bonded magnet. This can increase a magnetic torque while suppressing an increase in the physical size of the motor 100. In addition, since an uncured bonded magnet can be filled into the extended portion 121a, the auxiliary magnet 123 can be housed, without a gap, in the extended portion 121a having a complex shape.
As described above, according to the present embodiment and its modifications, it is possible to provide the motor 100 capable of increasing a torque while suppressing an increase in the physical size of the motor.
Hereinafter, with reference to
In the motors 100 according to the second embodiment and its Modifications 1 and 2 shown in
Meanwhile, the motor 100 according to the second embodiment and the motors 100 according to Modification 1 and Modification 2 of the second embodiment shown in
In contrast, the motor according to the comparative example shown in
In addition, in the motors 100 according to the second embodiment and its Modifications 1 and 2 shown in
Therefore, according to the motors 100 according to the second embodiment and its Modifications 1 and 2, satisfying the second condition can increase a torque while suppressing an increase in the physical size of the motor as compared to the motor according to the comparative example which does not satisfy the second condition.
Although the embodiments of the motors according to the present disclosure have been described in detail above with reference to the drawings, specific structures are not limited thereto, and any design changes that fall within the spirit and scope of the present disclosure are encompassed by the scope of the present disclosure.
Number | Date | Country | Kind |
---|---|---|---|
2021-068152 | Apr 2021 | JP | national |