The present disclosure relates to a motor.
A conventional inverter-integrated electric compressor includes a housing in which the compressor and the electric motor are built, a control circuit board having a heat conduction penetrating member, and an electric component mounted on the control circuit board. The heat conduction penetrating member has one end surface disposed allowing heat transfer to the heat radiating planar portion constituting an outer wall of the housing. The heat conduction penetrating member has the other end surface disposed with the electric component allowing heat transfer.
When a circuit board is accommodated in a cover of a motor, an integrated circuit mounted on the circuit board and the cover are thermally connected through a heat sink. That is, heat of the integrated circuit is transferred to the cover through the heat sink. However, when the cover is made of sheet metal, it is difficult to ensure the efficiency of heat conduction from the heat sink to the cover.
An example embodiment of a motor of the present disclosure includes a rotor including a motor shaft extending along a central axis, a stator radially facing the rotor with a gap therebetween, a pair of bearings rotatably supporting the motor shaft, a circuit board positioned in one axial direction from the stator, including a board surface mounted with an integrated circuit, disposed facing the one axial direction, a heat sink disposed in the one axial direction from the circuit board, in thermal contact with the integrated circuit, and a cover accommodating the rotor, the stator, the pair of bearings, the circuit board, and the heat sink, the cover including a first cup body and a second cup body that are each in a bottomed tubular shape, the first cup body and the second cup body each including a bottom wall portion with a bearing holding portion to hold the corresponding one of the pair of bearings, and a peripheral wall portion in a tubular shape extending axially from an outer peripheral edge of the bottom wall portion, the first cup body and the second cup body being disposed with openings in the peripheral wall portions, facing each other, at least the second cup body of the first cup body and the second cup body being made of sheet metal, the bottom wall portion of the first cup body being provided with a shaft insertion hole that axially passes through the bottom wall portion, the bottom wall portion of the second cup body including a surface facing the other axial direction, the surface having a flat surface in a ring shape perpendicular or substantially perpendicular to the central axis, disposed at a radial position radially outward from the bearing holding portion, and a connection surface disposed between the bearing holding portion and the flat surface to connect the bearing holding portion and the flat surface, the heat sink including a first end portion in the other axial direction, in thermal contact with the integrated circuit, and a second end portion in the one axial direction, being disposed at a radial position radially outward from the first end portion, in contact with the flat surface.
The above and other elements, features, steps, characteristics and advantages of the present disclosure will become more apparent from the following detailed description of the example embodiments with reference to the attached drawings.
As illustrated in
In the present example embodiment, a direction parallel to the central axis J is simply referred to as “axial direction”. A direction from the first end portion of the both end portions of the motor shaft 3, where the output end 3a is positioned, toward a second end portion different from the first end portion is referred to as one axial direction. The one axial direction is shown in the left side of
As illustrated in
As illustrated in
The first cup body 6A is positioned in the other axial direction from the second cup body 6B. The second cup body 6B is positioned in the one axial direction from the first cup body 6A. The first cup body 6A opens toward the one axial direction. The second cup body 6B opens toward the other axial direction. The first cup body 6A and the second cup body 6B each have a bottom wall portion 8, a peripheral wall portion 9, and a flange portion 10. The first cup body 6A and the second cup body 6B are disposed with openings in the peripheral wall portions 9, facing each other. The first cup body 6A and the second cup body 6B are fixed to each other with their openings facing each other in the axial direction. The flange portion 10 of the first cup body 6A and the flange portion 10 of the second cup body 6B face each other in the axial direction and are in contact with each other. The first cup body 6A and the second cup body 6B have the respective flange portions 10 that are fixed to each other. In a state where the first cup body 6A and the second cup body 6B are fixed to each other, the inside of the first cup body 6A and the inside of the second cup body 6B communicate with each other.
The bottom wall portion 8 includes a bearing holding portion 18, a flat portion 8c, and a connection portion 8d. The bearing holding portion 18 has a bottomed tubular shape. The bearing holding portion 18 has the bottomed cylindrical shape about the central axis J. The bearing holding portion 18 opens toward the inside of the cover 5. The bearing holding portion 18 holds the bearing 7. The bearing 7 is a ball bearing or the like, for example. The bearing 7 is fitted into the bearing holding portion 18 and fixed. In the cover 5, the pair of bearings 7 is disposed apart from each other in the axial direction. The pair of bearings 7 is disposed at respective ends of the cover 5 in the axial direction. The pair of bearings 7 rotatably supports the motor shaft 3. The bearing 7 supports the motor shaft 3 in a rotatable manner around the central axis J.
The bottom wall portion 8 of the first cup body 6A is provided with a shaft insertion hole 19 that passes through the bottom wall portion 8 in the axial direction. The shaft insertion hole 19 is provided in the bearing holding portion 18 of the first cup body 6A. The shaft insertion hole 19 is a through hole that passes through a bottom of the bearing holding portion 18. The motor shaft 3 is inserted into the shaft insertion hole 19. The motor shaft 3 passes through the shaft insertion hole 19 and projects from the inside of the cover 5 to the outside.
The flat portion 8c has a ring shape and extends in the circumferential direction. The flat portion 8c has an annular plate-like shape about the central axis J. The flat portion 8c has a plate surface that faces in the axial direction and that spreads in a direction perpendicular to the central axis J. The flat portion 8c is disposed radially outward from the bearing holding portion 18. The flat portion 8c surrounds the bearing holding portion 18 from radially outside. The flat portion 8c is disposed at a position overlapping the bearing holding portion 18 as viewed radially. The flat portion 8c is connected to the peripheral wall portion 9. The flat portion 8c is connected at its outer edge portion to an end portion of the peripheral wall portion 9, opposite to an opening thereof along the axial direction.
The bottom wall portion 8 of the second cup body 6B is provided with a through hole 23. The second cup body 6B has a plurality of the through holes 23 passing through the bottom wall portion 8 in the axial direction. The through hole 23 is a circular hole, for example. The through hole 23 is provided in the flat portion 8c of the second cup body 6B. The through hole 23 passes through the flat portion 8c of the second cup body 6B in the axial direction. The plurality of the through holes 23 is disposed in the bottom wall portion 8, spaced apart from each other in the circumferential direction. The plurality of the through holes 23 is disposed in the flat portion 8c at equal intervals in the circumferential direction.
The bottom wall portion 8 of the second cup body 6B is provided with a plurality of the stud bolts 22. The stud bolt 22 projects from the bottom wall portion 8 of the second cup body 6B to the one axial direction. The plurality of the stud bolts 22 is disposed on the bottom wall portion 8, spaced apart from each other in the circumferential direction. In the present example embodiment, the bottom wall portion 8 of the second cup body 6B is provided with three or more stud bolts 22 spaced apart from each other in the circumferential direction. In the illustrated example, four stud bolts 22 are provided on the bottom wall portion 8 at equal intervals in the circumferential direction. The plurality of the stud bolts 22 is disposed in the flat portion 8c, spaced apart from each other in the circumferential direction. The stud bolt 22 is inserted into the through hole 23 and attached to the bottom wall portion 8. The stud bolt 22 is press-fitted into the through hole 23 and fixed to the flat portion 8c. The motor 1 is attached and fixed to a device frame or the like (not illustrated), to which the motor 1 is to be attached, using the stud bolt 22.
The stud bolt 22 has a bolt portion 22a and a head portion 22b. The bolt portion 22a has a pillar shape extending in the axial direction. The bolt portion 22a has a cylindrical columnar shape. The bolt portion 22a is inserted into the through hole 23. The bolt portion 22a passes through the through hole 23 to project to the one axial direction. The bolt portion 22a projects from the bottom wall portion 8 to the one axial direction. The bolt portion 22a has an end portion in the other axial direction, being fitted into the through hole 23. The bolt portion 22a is provided with a thread portion at least in a portion other than the end portion in the other axial direction. In the example illustrated in
The head portion 22b has a plate-like shape. The head portion 22b has a disk-like shape coaxial with the bolt portion 22a. The head portion 22b has an outer diameter larger than that of the bolt portion 22a. The head portion 22b is connected to an end portion of the bolt portion 22a in the other axial direction. The head portion 22b is in contact with the bottom wall portion 8 from the other axial direction. The head portion 22b is in contact with the bottom wall portion 8 from the inside of the motor. The head portion 22b is in contact with a flat surface 8a (described later) of the flat portion 8c from the other axial direction. The head portion 22b projects from the flat portion 8c in the other axial direction by a dimension of 1 mm or less, for example. In the example of the present example embodiment, the head portion 22b projects from the flat portion 8c in the other axial direction by a dimension of 0.3 to 0.4 mm.
The bottom wall portion 8 of the second cup body 6B is provided with a screw mounting hole (not illustrated). The second cup body 6B has the screw mounting hole that passes through the bottom wall portion 8 in the axial direction. The screw mounting hole is a circular hole, for example. A plurality of the screw mounting holes is provided in the flat portion 8c of the second cup body 6B. The screw mounting hole passes through the flat portion 8c of the second cup body 6B in the axial direction. The plurality of the screw mounting holes is disposed in the bottom wall portion 8, spaced apart from each other in the circumferential direction. Two screw mounting holes are provided. Into the screw mounting hole, the screw member 25 described later is inserted.
The connection portion 8d connects the bearing holding portion 18 and the flat portion 8c. The connection portion 8d connects an opening of a cylindrical portion of the bearing holding portion 18 and an inner peripheral edge of the flat portion 8c. The connection portion 8d is disposed between the bearing holding portion 18 and the flat portion 8c. The connection portion 8d is positioned between the bearing holding portion 18 and the flat portion 8c along the radial direction. In the example of the present example embodiment, the connection portion 8d has a tapered tubular shape about the central axis J. The connection portion 8d extends toward an opening side of the peripheral wall portion 9 along the axial direction as extending radially inward from the flat portion 8c. That is, the connection portion 8d of the first cup body 6A extends toward the one axial direction as extending radially inward from the flat portion 8c. The connection portion 8d of the second cup body 6B extends toward the other axial direction as extending radially inward from the flat portion 8c.
The bottom wall portion 8 of the second cup body 6B has a surface facing the other axial direction, including the flat surface 8a and a connection surface 8b. The flat surface 8a is disposed on the flat portion 8c of the second cup body 6B. The flat surface 8a faces the other axial direction in the flat portion 8c of the second cup body 6B. The flat surface 8a has a ring shape perpendicular to the central axis J. The flat surface 8a has an annular surface shape extending in a direction perpendicular to the central axis J. The flat surface 8a is disposed at a radial position radially outward from the bearing holding portion 18. The flat surface 8a surrounds the bearing holding portion 18 from radially outside.
The connection surface 8b is disposed in the connection portion 8d of the second cup body 6B. The connection surface 8b faces the other axial direction in the connection portion 8d of the second cup body 6B. The connection surface 8b connects the bearing holding portion 18 and the flat surface 8a. The connection surface 8b connects the opening of the cylindrical portion of the bearing holding portion 18 and an inner peripheral edge of the flat surface 8a. The connection surface 8b is disposed between the bearing holding portion 18 and the flat surface 8a. The connection surface 8b is positioned between the bearing holding portion 18 and the flat surface 8a along the radial direction. In the example of the present example embodiment, the connection surface 8b has a tapered surface shape about the central axis J. The connection surface 8b extends toward the one axial direction from the bearing holding portion 18 as extending radially outward.
The peripheral wall portion 9 has a tubular shape about the central axis J. The peripheral wall portion 9 has a cylindrical shape. The peripheral wall portion 9 extends in the axial direction from an outer peripheral edge of the bottom wall portion 8. The peripheral wall portion 9 opens on the side opposite to the bottom wall portion 8 along the axial direction. At an end portion of the peripheral wall portion 9 on the side opposite to the bottom wall portion 8 along the axial direction, an opening is positioned. The peripheral wall portion 9 has an end portion opposite to the opening along the axial direction that is closed by the bottom wall portion 8.
The peripheral wall portion 9 of the first cup body 6A is provided with a plurality of stator support claws 9a. The stator support claws 9a project from the peripheral wall portion 9 into the first cup body 6A. The plurality of stator support claws 9a is disposed on the peripheral wall portion 9, spaced apart from each other in the circumferential direction. The stator support claws 9a are in contact with the stator 4 disposed in the first cup body 6A from the other axial direction. The stator support claws 9a support the stator 4 toward the one axial direction.
The peripheral wall portion 9 of the second cup body 6B has a bush 9b. The bush 9b has a tubular shape. The bush 9b is elastically deformable. The peripheral wall portion 9 of the second cup body 6B is provided with a wiring through hole (not illustrated) that passes through the peripheral wall portion 9 in the radial direction. The bush 9b is inserted into the wiring through hole and fixed to the peripheral wall portion 9. The outside and inside of the cover 5 communicate with each other through the inside of the bush 9b. The wiring member 50 is allowed to pass through the bush 9b. The wiring member 50 passes through the bush 9b and extends outside and inside the cover 5. The bush 9b is provided at its radially inner end with a wiring outlet (not illustrated). That is, the peripheral wall portion 9 of the second cup body 6B has the wiring outlet. The wiring outlet opens inside the cover 5. The wiring member 50 passes through the bush 9b and projects into the cover 5 from the wiring outlet. The wiring member 50 is electrically connected to the circuit board 20.
The flange portion 10 has a ring shape that extends radially outward from an end edge of the peripheral wall portion 9 opposite to the bottom wall portion 8. The flange portion 10 has an annular plate-like shape that extends radially outward from an end portion of the peripheral wall portion 9 opposite to the bottom wall portion 8, along the axial direction. The flange portion 10 has a plate surface that faces in the axial direction and that spreads in a direction perpendicular to the central axis J. The plate surface of the flange portion 10 of the first cup body 6A, facing the one axial direction and the plate surface of the flange portion 10 of the second cup body 6B, facing the other axial direction, are in contact with each other. The first cup body 6A and the second cup body 6B are disposed with the flange portions 10 in contact with each other in the axial direction.
The rotor 2 has the motor shaft 3 and the rotor magnet 2a. The motor shaft 3 has a portion supported by the pair of bearings 7 and a portion positioned between the pair of bearings 7, the portions being disposed inside the cover 5. The motor shaft 3 has a portion positioned in the other axial direction from the bearing 7 accommodated in the first cup body 6A, the portion being disposed outside the cover 5. The motor shaft 3 and the pair of bearings 7 are prevented from moving in the axial direction by a retaining ring or the like. The rotor magnet 2a has a tubular shape about the central axis J. The rotor magnet 2a has a cylindrical shape. The rotor magnet 2a is fixed to an outer peripheral surface of the motor shaft 3.
The stator 4 is fitted into the cover 5. The stator 4 is fitted and fixed to an inner peripheral surface of the peripheral wall portion 9 of the first cup body 6A. The stator 4 faces the rotor 2 with a gap in the radial direction. The stator 4 faces the rotor 2 from radially outside. The stator 4 includes a stator core 26, a coil 27, an insulating part 28, and a binding pin (not illustrated). The stator core 26 has a ring shape that surrounds a radially outer side of the rotor 2. The stator core 26 faces the rotor magnet 2a with a gap in the radial direction. The stator core 26 faces the rotor magnet 2a from radially outside.
The coil 27 is attached to the stator core 26. The coil 27 is attached to the stator core 26 indirectly with the insulating part 28 interposed therebetween. The insulating part 28 has a portion disposed between the stator core 26 and the coil 27. The insulating part 28 has a portion radially facing the coil 27. That is, the insulating part 28 radially faces the coil 27. The insulating part 28 includes an outer peripheral insulating portion 28a positioned radially outside the coil 27 and an inner peripheral insulating portion 28b positioned radially inside the coil 27. The outer peripheral insulating portion 28a faces the coil 27 from radially outside. The inner peripheral insulating portion 28b faces the coil 27 from radially inside. To the outer peripheral insulating portion 28a, the circuit board 20 is attached and fixed.
As illustrated in
The inner peripheral circuit board receiver 31b is in contact with the surface of the circuit board 20 in the other axial direction radially inward from the coil 27. The inner peripheral circuit board receiver 31b is in contact the circuit board 20 from the other axial direction radially inward from the coil 27. The inner peripheral circuit board receiver 31b is provided in the inner peripheral insulating portion 28b. A plurality of the inner peripheral circuit board receivers 31b is provided in the inner peripheral insulating portion 28b, spaced apart from each other in the circumferential direction. That is, the insulating part 28 has the plurality of the inner peripheral circuit board receivers 31b.
Although not illustrated, the binding pin extends from the insulating part 28 in the one axial direction and passes through the circuit board 20 in the axial direction. The binding pin is provided on the outer peripheral insulating portion 28a. A plurality of the binding pins is provided in the outer peripheral insulating portion 28a, spaced apart from each other in the circumferential direction. The binding pin is disposed between the outer peripheral circuit board receivers 31a adjacent to each other in the circumferential direction. The binding pin is wound with coil lead wires (not illustrated) extending from the coil 27. Four coil lead wires are provided. The four coil lead wires are used for a U phase, a V phase, a W phase, and a neutral point. Four binding pins are provided. The binding pins are identical in number to the coil lead wires. That is, four sets of the coil lead wire and the binding pin are provided. The binding pin has an end portion in the one axial direction with the coil lead wire, being fixed to a surface of the circuit board 20 facing the one axial direction by solder (not illustrated).
As illustrated in
As illustrated in
The capacitor is mounted on the board surface of the circuit board 20, facing the one axial direction. The capacitor has a cylindrical columnar shape. The capacitor extends in the axial direction. The capacitor has a surface that faces the one axial direction and that faces the bottom wall portion 8 of the second cup body 6B from the axial direction. The surface of the capacitor facing the one axial direction is disposed with a gap with a surface of the bottom wall portion 8, facing the other axial direction.
The heat radiating member 24 is sandwiched between the heat sink 21 described later and the integrated circuit 20a. The heat radiating member 24 is elastically deformable. The heat radiating member 24 has a plate-like shape. The heat radiating member 24 has a rectangular plate-like shape. The heat radiating member 24 has a rectangular plate-like shape having a circumferential length larger than its radial length. The heat radiating member 24 has a plate surface that faces the axial direction and that spreads in a direction perpendicular to the central axis J. The plate surface of the heat radiating member 24 has a rectangular shape having a circumferential length larger than its radial length.
The heat radiating member 24 has a plate surface facing the other axial direction, in contact with the integrated circuit 20a. The plate surface of the heat radiating member 24, facing the other axial direction, is in contact with a board surface of the integrated circuit 20a, facing the one axial direction. The plate surface of the heat radiating member 24, facing the other axial direction, has a surface area larger than a surface area of the board surface of the integrated circuit 20a, facing the one axial direction. The board surface of the integrated circuit 20a, facing the one axial direction, is covered with the plate surface of the heat radiating member 24, facing the other axial direction. The heat radiating member 24 has a plate surface facing the one axial direction, in contact with the heat sink 21. The plate surface facing the one axial direction of the heat radiating member 24 is in contact with an end surface 21a of the heat sink 21, facing the other axial direction. The plate surface of the heat radiating member 24, facing the one axial direction, has a surface area larger than a surface area of the end surface 21a. The end surface 21a is covered with the plate surface of the heat radiating member 24, facing the one axial direction.
The heat sink 21 is disposed in the one axial direction from the circuit board 20. The heat sink 21 is in thermal contact with the integrated circuit 20a. The heat sink 21 is in thermal contact with the integrated circuit 20a with the heat radiating member 24 interposed therebetween. The heat sink 21 is fixed to the cover 5. The heat sink 21 is attached and fixed to the second cup body 6B. The heat sink 21 is fixed to the bottom wall portion 8 of the second cup body 6B.
As illustrated in
The first end portion 21c has an end surface 21a facing the other axial direction, a surface 21h facing the radial inside, and a surface 21j facing the radial outside. That is, the heat sink 21 has the end surface 21a facing the other axial direction. The end surface 21a has a quadrangular shape. The end surface 21a has a rectangular shape. The end surface 21a has a circumferential length larger than its radial length. The end surface 21a is in contact with the heat radiating member 24 from the one axial direction. The end surface 21a has a surface area that is substantially equal to a surface area of the board surface of the integrated circuit 20a, facing the one axial direction. The end surface 21a is disposed at a position overlapping the heat radiating member 24 and the integrated circuit 20a as viewed from the axial direction. The end surface 21a has a peripheral portion disposed at a position that substantially overlaps a peripheral portion of the integrated circuit 20a as viewed from the axial direction.
The surface 21h has a quadrangular shape. The surface 21h has a rectangular shape. The surface 21h has a circumferential length larger than its axial length. The surface 21j has a quadrangular shape. The surface 21j has a rectangular shape. The surface 21j has a circumferential length larger than its axial length.
The second end portion 21d is an end portion of the heat sink 21 in the one axial direction. The second end portion 21d has a rectangular parallelepiped shape. The second end portion 21d has a circumferential length larger than its radial length. The second end portion 21d is in contact with the bottom wall portion 8 of the second cup body 6B. The second end portion 21d is in contact with the flat portion 8c of the bottom wall portion 8 from the other axial direction. The second end portion 21d is in contact with the flat surface 8a.
The second end portion 21d is disposed at a radial position radially outward from the first end portion 21c. That is, the second end portion 21d is disposed with a radial center position radially outward from a radial center position of the first end portion 21c. The second end portion 21d has a radially inner end positioned radially outward from a radially inner end of the first end portion 21c. The second end portion 21d has a radially outer end positioned radially outward from a radially outer end of the first end portion 21c.
The second end portion 21d has an end surface 21b facing the one axial direction, a surface 21i facing the radial inside, and a surface 21k facing the radial outside. That is, the heat sink 21 has the end surface 21b facing the one axial direction. The end surface 21b has a quadrangular shape. The end surface 21b has a rectangular shape. The end surface 21b has a circumferential length larger than its radial length. The end surface 21b has a surface area equal to or larger than the surface area of the end surface 21a. That is, the surface area of the end surface 21b is equal to or larger than the surface area of the end surface 21a.
The end surface 21b is in contact with the bottom wall portion 8 of the second cup body 6B from the other axial direction. As illustrated in
Although not illustrated, the end surface 21b is provided with a screw hole. That is, the second end portion 21d has the screw hole. The screw hole opens in the end surface 21b and extends in the axial direction. The screw hole is provided in its inner periphery with a female thread. A plurality of the screw holes is provided in the second end portion 21d. The plurality of the screw holes is disposed in the second end portion 21d, spaced apart from each other in the circumferential direction. Two screw holes are provided. The screw member 25 described later is inserted into the screw hole and fixed.
As illustrated in
The bent portion 21e is a portion positioned between both the end portions 21c and 21d of the heat sink 21 in the axial direction. The bent portion 21e is an intermediate portion positioned between both the end portions 21c and 21d of the heat sink 21 in the axial direction. That is, the bent portion 21e is disposed at an intermediate position between the first end portion 21c and the second end portion 21d in the axial direction. The bent portion 21e connects the first end portion 21c and the second end portion 21d.
The bent portion 21e has a first step surface 21f and a second step surface 21g. That is, the heat sink 21 has the first step surface 21f and the second step surface 21g. The first step surface 21f connects the surface 21h and the surface 21i. The first step surface 21f faces the one axial direction. The first step surface 21f has a quadrangular shape. The first step surface 21f has a rectangular shape. The first step surface 21f has a circumferential length larger than its radial length. The second step surface 21g connects the surface 21j and the surface 21k. The second step surface 21g faces the other axial direction. The second step surface 21g has a quadrangular shape. The second step surface 21g has a rectangular shape. The second step surface 21g has a circumferential length larger than its radial length. The second step surface 21g is disposed at an axial position in the other axial direction from an axial position of the first step surface 21f.
In the example of the present example embodiment, the heat sink 21 has a circumferential length that is substantially constant over its entire axial length. The heat sink 21 has a pair of side surfaces facing the circumferential direction, each of which has a planar shape parallel to the central axis J. The pair of side surfaces are parallel to each other. The side surface is throughout flush with the first end portion 21c, the bent portion 21e, and the second end portion 21d.
The heat sink 21 has a radial length in the bent portion 21e, larger than that in each of the first end portion 21c and the second end portion 21d. The heat sink 21 has a maximum radial length in the bent portion 21e. The second end portion 21d has a radial length equal to or larger than a radial length of the first end portion 21c. That is, the radial length of the second end portion 21d is equal to or larger than the radial length of the first end portion 21c.
As illustrated in
As illustrated in
The screw member 25 has a thread portion (not illustrated) and a head portion. The threaded portion has a cylindrical columnar shape extending in the axial direction. The thread portion has a male screw on its outer circumference. The thread portion is inserted into the screw mounting hole of the bottom wall portion 8 and attached to the screw hole of the second end portion 21d. That is, the screw member 25 is fixed to the second end portion 21d. The head portion has an outer diameter larger than that of the thread portion. The head portion is connected to an end of the thread portion in the one axial direction. The head portion is in contact with the bottom wall portion 8 from the one axial direction. The head portion is in contact with the bottom wall portion 8 from outside of the motor. The head portion is in contact with the flat portion 8c from the one axial direction. The head portion projects from the bottom wall portion 8 in the one axial direction.
In the motor 1 of the present example embodiment described above, the integrated circuit 20a is disposed radially inward away from the vicinity of the outer peripheral edge of the circuit board 20 as illustrated in
According to the present example embodiment, the second end portion 21d of the heat sink 21 is disposed at a radial position radially outward from the first end portion 21c. Thus, when the first end portion 21c is in thermal contact with the integrated circuit 20a, and the second end portion 21d is in contact with the flat surface 8a of the bottom wall portion 8, a contact area between the second end portion 21d and the flat surface 8a can be secured. This causes heat of the integrated circuit 20a to be easily transferred from the heat sink 21 to the second cup body 6B, so that heat dissipation efficiency is enhanced. Accordingly, the integrated circuit 20a of the circuit board 20 can be efficiently cooled.
In the present example embodiment, the heat sink 21 has a bent portion 21e at an intermediate position between the first end portion 21c and the second end portion 21d. Providing the bent portion 21e increases a surface area of the heat sink 21 to improve heat dissipation efficiency. The heat sink 21 has the first step surface 21f and the second step surface 21g, so that the heat dissipation efficiency is improved.
In the present example embodiment, the end surface 21b facing the one axial direction in the second end portion 21d has a circumferential length larger than its radial length. The flat surface 8a of the bottom wall portion 8 of the second cup body 6B is long in the circumferential direction, so that a contact area of the end surface 21b with the flat surface 8a is liable to be secured.
In the present example embodiment, the end surface 21b facing the one axial direction in the second end portion 21d has a surface area equal to or larger than a surface area of the end surface 21a facing the other axial direction in the first end portion 21c. The end surface 21a of the first end portion 21c, facing the other axial direction, is in thermal contact with the integrated circuit 20a of the circuit board 20. According to the present example embodiment, heat of the integrated circuit 20a can be efficiently dissipated to the bottom wall portion 8 of the second cup body 6B through the heat sink 21.
In the present example embodiment, the heat radiating member 24 is sandwiched between the heat sink 21 and the integrated circuit 20a, so that cooling efficiency of the integrated circuit 20a is stably enhanced. The heat radiating member 24 comes into close contact with the integrated circuit 20a and the heat sink 21 to enhance thermal conductivity from the integrated circuit 20a to the heat sink 21.
The present disclosure is not limited to the above-described example embodiment, and as described below, for example, the structure can be changed within a range without departing from the spirit of the present disclosure.
While in the above-described example embodiment, the first cup body 6A and the second cup body 6B are made of sheet metal, they are not limited to this structure. The first cup body 6A may be made of aluminum die casting or the like, for example, other than sheet metal.
In
While in
While the connection portion 8d of the second cup body 6B has a tapered tubular shape and the connection surface 8b has a tapered surface shape, the present disclosure is not limited to this structure. The connection portion 8d only needs to connect the bearing holding portion 18 to the flat portion 8c, and thus, for example, may have a tubular shape stepped in the other axial direction, in which a diameter gradually decreases radially inward from the flat portion 8c. In this case, the connection surface 8b has an outer peripheral surface facing the radial outside and an annular surface facing the other axial direction.
The heat sink 21 may be fixed using an adhesive or the like instead of being fixed to the bottom wall portion 8 of the second cup body 6B using the screw member 25. However, using the screw member 25 shortens manufacturing time compared to using an adhesive or the like, so that productivity is improved. The heat radiating member 24 may not be provided. Instead of the heat radiating member 24, thermal grease or the like may be provided, for example.
The shape of the heat sink 21 is not limited to the structure described in the above example embodiment. As illustrated in modifications illustrated in
In the modification illustrated in
Although not illustrated, the heat sink 21 may have a plurality of fins on its outer peripheral surface facing a direction perpendicular to the axial direction. That is, the heat sink 21 may be configured to have a plurality of fins on its outer peripheral surface. In this case, the heat sink 21 is increased in surface area to improve the heat dissipation efficiency of the heat sink 21. Thus, heat dissipation efficiency of the integrated circuit 20a can be enhanced.
In addition, within a range without departing from the spirit of the present disclosure, the structures (components) described in the above-described example embodiments, modifications, and explanatory notes, may be combined, and addition, elimination, substitution, of the structures, and another change may be available. Further, the present disclosure is not limited by the above-described example embodiments, but is limited only by the scope of claims.
Features of the above-described preferred example embodiments and the modifications thereof may be combined appropriately as long as no conflict arises.
While example embodiments of the present disclosure have been described above, it is to be understood that variations and modifications will be apparent to those skilled in the art without departing from the scope and spirit of the present disclosure. The scope of the present disclosure, therefore, is to be determined solely by the following claims.
Number | Date | Country | Kind |
---|---|---|---|
2017-191855 | Sep 2017 | JP | national |
This is a U.S. national stage of PCT Application No. PCT/JP2018/034332, filed on Sep. 18, 2018, and priority under 35 U.S.C. § 119(a) and 35 U.S.C. § 365(b) is claimed from Japanese Application No. 2017-191855, filed Sep. 29, 2017; the disclosures of each of which are hereby incorporated herein by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2018/034332 | 9/18/2018 | WO | 00 |