Motorized antenna pointing device

Information

  • Patent Grant
  • 6480161
  • Patent Number
    6,480,161
  • Date Filed
    Friday, December 29, 2000
    24 years ago
  • Date Issued
    Tuesday, November 12, 2002
    22 years ago
  • Inventors
  • Original Assignees
  • Examiners
    • Wong; Don
    • Clinger; James
    Agents
    • Kirkpatrick & Lockhart LLP
Abstract
A portable alignment device for orienting an antenna in a desired azimuth orientation and methods for orienting an antenna in a desired azimuth orientation. In one embodiment, the device comprises a portable motor unit that is removably affixed to a portion of the antenna such as a portion of the antenna mounting bracket. A gear assembly is clamped to a portion of a mast to which the antenna mounting bracket is attached. The gear assembly is in meshing engagement with a driver gear attached to the motor's output shaft. By powering the motor, the antenna is pivoted about the mast until it is moved to a desired azimuth orientation. After the antenna has been oriented to a desired orientation and locked in that orientation, the portable motor unit is removed from the antenna and the gear assembly is removed from the mast to permit those devices to be used to orient other antennas.
Description




CROSS-REFERENCE TO RELATED APPLICATIONS




Not applicable.




FEDERALLY SPONSORED RESEARCH




Not applicable.




BACKGROUND OF THE INVENTION




1. Field of the Invention




The subject invention relates to alignment devices and, more particularly, to devices for aligning an antenna with a satellite.




2. Description of the Invention Background




The advent of the television can be traced as far back to the end of the nineteenth century and beginning of the twentieth century. However, it wasn't until 1923 and 1924, when Vladimir Kosma Zworkykin invented the iconoscope, a device that permitted pictures to be electronically broken down into hundreds of thousands of components for transmission, and the kinescope, a television signal receiver, did the concept of television become a reality. Zworkykin continued to improve those early inventions and television was reportedly first showcased to the world at the 1939 World's Fair in New York, where regular broadcasting began.




Over the years, many improvements to televisions and devices and methods for transmitting and receiving television signals have been made. In the early days of television, signals were transmitted and received through the use of antennas. Signal strength and quality, however, were often dependent upon the geography of the land between the transmitting antenna and the receiving antenna. Although such transmission methods are still in use today, the use of satellites to transmit television signals is becoming more prevalent. Because satellite transmitted signals are not hampered by hills, trees, mountains. etc., such signals typically offer the viewer more viewing options and improved picture quality. Thus, many companies have found offering satellite television services to be very profitable and, therefore, it is anticipated that more and more satellites will be placed in orbit in the years to come. As additional satellites are added, more precise antenna/satellite alignment methods and apparatuses will be required.




Modem digital satellite communication systems typically employ a ground-based transmitter that beams an uplink signal to a satellite positioned in geosynchronous orbit. The satellite relays the signal back to ground-based receivers. Such systems permit the household or business subscribing to the system to receive audio, data and video signals directly from the satellite by means of a relatively small directional receiver antenna. Such antennas are commonly affixed to the roof or wall of the subscriber's residence or mast located in the subscriber's yard. A typical antenna constructed to received satellite signals comprises a dish-shaped receiver that has a support arm protruding outward from the front surface of the dish.




The support arm supports a low noise block amplifier with an integrated feed “LNBF”. The dish collects and focuses the satellite signal onto the LNBF which is connected, via cable, to the subscriber's set top box.




To obtain an optimum signal, the antenna must be installed such that the centerline axis of the dish, also known as the “bore site” or “pointing axis”, is accurately aligned with the satellite. To align an antenna with a particular satellite, the installer must be provided with accurate positioning information for that particular satellite. For example, the installer must know the proper azimuth and elevation settings for the antenna. The azimuth setting is the compass direction that the antenna should be pointed relative to magnetic north. The elevation setting is the angle between the Earth and the satellite above the horizon. Many companies provide installers with alignment information that is specific to the geographical area in which the antenna is to be installed.




The ability to quickly and accurately align the centerline axis of antenna with a satellite is somewhat dependent upon the type of mounting arrangement employed to support the antenna and the skill of the installer. Prior antenna mounting arrangements typically comprise a mounting bracket that is directly affixed to the rear surface of the dish. The mounting bracket is then attached to a vertically oriented mast that is buried in the earth, mounted to a tree, or mounted to a portion of the subscriber's residence or place of business. The mast is installed such that it is plumb (i.e., relatively perpendicular to the horizon). Thereafter, the installer must orient the antenna to the proper azimuth and elevation. These adjustments are typically made at the mounting bracket.




In an effort to automate the adjustment and positioning of an antenna, several different permanent motorized antenna mounts have been designed. For example, U.S. Pat. No. 4,726,259 to Idler, U.S. Pat. No. 4,626,864 to Micklethwaite, and U.S. Pat. No. 5,469,182 to Chaffe disclose different motorized antenna positioners that are designed to be permanently affixed to an antenna. Those devices are not designed such that they can be used to orient an antenna and then removed therefrom in order that they can be used to orient another antenna.




Thus, there is a need for a portable antenna alignment device that can be attached to antenna to automatically position the antenna in a desired orientation and removed therefrom to enable the device to be used to position other antennas.




SUMMARY OF THE INVENTION




In accordance with one form of the present invention, there is provided a device for orienting an antenna that has a mounting bracket assembly that is attached to a mast. This embodiment of the device includes a motorized driver gear that is attachable to the antenna and a gear assembly that is attachable to the mast. When the motorized driver gear is attached to the antenna and the driven gear is attached to the mast, the driven gear is in meshing engagement with the driver gear.




Another embodiment of the present invention comprises a portable antenna alignment device for orienting an antenna that has a mounting bracket that is attached to a mast. This embodiment of the alignment device includes a motor and a clamping assembly that is attached to the motor for removably clamping the motor to a portion of the antenna. The device further includes a driver gear attached to the motor, a first gear assembly that has a first gear segment, and a second gear assembly that has a second gear segment. The second gear assembly is attachable to the first gear assembly to clamp a portion of the antenna mast therebetween such that the first and second gear segments form a driven gear about the mast for meshing engagement with the driver gear.




Another embodiment of the present invention comprises a method of orienting an antenna in a desired azimuth orientation that includes supporting a mast in a vertical orientation such that the mast is plumb and affixing a mounting bracket that is attached to the antenna to the mast. The mounting bracket has azimuth locking members that permit the antenna to be pivoted to a desired azimuth position when loosened and thereafter serve to retain the antenna in the desired azimuth position when the locking members are locked in position. The method further includes affixing a motor that has a driver gear to the antenna and affixing a driven gear to the mast such that the driven gear is in meshing engagement with the driven gear. Thereafter, the azimuth locking members are loosened to permit the antenna to be pivoted to a desired azimuth orientation. The motor is then powered to rotate the antenna to the desired azimuth position.




Yet another embodiment of the present invention comprises a method of orienting an antenna in a desired azimuth orientation that includes mounting a mast in a vertical orientation and affixing a mounting bracket that is attached to the antenna to the mast. The mounting bracket has azimuth locking members that permit the antenna to be pivoted to a desired azimuth position when loosened and thereafter serve to retain the antenna in the desired azimuth position when the locking members are locked in position. The method also includes clamping a motor having a driver gear to a portion of the mounting bracket and clamping a driven gear to the mast in meshing engagement with the driver gear. The azimuth locking members are loosened to permit the portion of the mounting bracket to which the motor is clamped to pivot about the mounting mast. The motor is then powered to pivot the portion of the mounting bracket to which the motor is clamped to a desired azimuth orientation. Thereafter, the azimuth locking members are locked to retain the antenna in the desired azimuth orientation. The motor is detached from the antenna and the driven gear is detached from the mast.




It is a feature of the present invention to provide devices and methods that can be used to orient an antenna in a desired azimuth orientation.




It is another feature of the present invention to provide a device that has the above-mentioned attributes that is readily portable and that may be used to orient several antennas.




Yet another feature of the present invention is to provide methods of installing an orienting an antenna in a desired azimuth orientation that can be easily employed by a single installer.




Accordingly, the present invention provides solutions to the shortcomings of prior apparatuses and methods for orienting antennas for receiving satellite signals. Those of ordinary skill in the art will readily appreciate, however, that these and other details, features and advantages will become further apparent as the following detailed description of the embodiments proceeds.











BRIEF DESCRIPTION OF THE DRAWINGS




In the accompanying Figures, there are shown present embodiments of the invention wherein like reference numerals are employed to designate like parts and wherein:





FIG. 1

is a side elevational view of one embodiment of the antenna alignment device of the present invention attached to a conventional antenna that is mounted to a mast to receive a signal from a satellite;





FIG. 2

is a top view of the antenna of

FIG. 1

;





FIG. 3

is a top of view of the antenna alignment device and antenna depicted in

FIG. 1

;





FIG. 4

is a partial view of a driver gear and a gear assembly of the antenna alignment device of

FIGS. 1 and 3

;





FIG. 5

is a partial view of antenna alignment device of the present invention coupled to antenna mast; and





FIG. 6

is another partial view of the antenna alignment device of FIG.


5


.











DETAILED DESCRIPTION OF THE EMBODIMENTS OF THE INVENTION




Referring now to the drawings for the purposes of illustrating embodiments of the invention only and not for the purposes of limiting the same,

FIG. 1

illustrates a conventional antenna


10


that is supported by a vertically extending antenna mast


15


. The mast


15


is mounted in the earth or attached to a structure (building, tree, etc.) such that it is plumb. Those of ordinary skill in the art will appreciate that various conventional methods exist for ensuring that the mast


15


is “plumb”. For example, a convention level or plumb bob could be used.




The antenna


10


includes parabolic dish


20


and an arm assembly


30


that supports a LNBF


32


for collecting focused signals from the dish


20


. Such LNBFs are known in the art and, therefore, the manufacture and operation of LNBF


32


will not be discussed herein. The dish


20


has a front surface


22


and a rear surface


24


. A conventional mounting bracket assembly


40


is attached to the rear surface


24


of the dish and serves to adjustably support the antenna on the mast


15


.




Antenna


10


must be properly positioned to receive the television signals transmitted by a satellite


14


to provide optimal image and audible responses. See

FIGS. 1 and 2

. This positioning process involves accurately aligning the antenna's centerline axis A—A, with the satellite's output signal. “Elevation”, “azimuth” and “skew” adjustments are commonly required to accomplish this task. As shown in

FIG. 1

, elevation refers to the angle between the centerline axis A—A of the antenna relative to the horizon (represented by line B—B), generally designated as angle “C”. In the antenna embodiment depicted in

FIG. 1

, the antenna's elevation is adjusted by loosening the an elevation adjustment bolt


42


and pivoting the antenna dish


20


to the desired elevation about a pivot axis D—D defined by the mounting bracket


40


. See FIG.


3


. Thereafter, the elevation adjustment bolt


42


is tightened to retain the antenna dish


20


in that orientation. To assist the installer in determining the proper elevation setting, a plurality of reference marks


43


are commonly provided on the mounting bracket. See FIG.


1


.




As shown in

FIG. 2

, “azimuth” refers to the angle of axis A—A relative to the direction of magnetic north in a horizontal plane. That angle is generally designated as angle “E” in FIG.


2


. To adjust the azimuth of the antenna


10


, the mounting bracket assembly


40


is equipped with an azimuth locking members in the form of azimuth adjustment bolts


44


. Azimuth adjustment bolts


44


are loosened and the antenna dish


20


is pivoted about the mast


15


until the desired azimuth orientation has been achieved. The azimuth adjustment bolts


44


are then retightened. A variety of different methods of determining the azimuth of the antenna have been developed. For example, the installer may support a conventional compass above or below the support arm and then align the support arm along the proper heading. An apparatus that employs a compass and an inclinometer for aligning a dish is disclosed in U.S. Pat. No. 5,977,992 and may be used to accomplish that task.




The motorized antenna alignment device


100


of the present invention may be employed to align the antenna


10


in a desired azimuth orientation. More specifically and with reference to FIGS.


1


and


3


-


6


, one embodiment of the motorized antenna alignment device


100


includes a conventional motor


110


. Motor


110


has a driven shaft


112


to which a driver gear


120


is non-rotatably affixed. Driver gear


120


is adapted to intermesh with the gear assembly


130


attached to the mast


15


. Gear assembly


130


comprises a split collar assembly that is adapted to be removably affixed to the mast


15


. As can be seen in

FIGS. 1

,


5


and


6


, the gear assembly


130


includes a first gear assembly


140


and a second gear assembly


150


. The first gear assembly


140


includes first and second collar portions (


142


,


144


) and a first gear segment


146


. Similarly, the second gear assembly


150


includes a primary collar portion


152


, a secondary collar portion


154


and a second gear segment


156


. The first collar portion


142


has a pair of holes hole


143


therethrough that are adapted to be coaxially aligned with a pair of threaded bores


153


in the primary collar portion


152


. First clamping bolts


145


are inserted through holes


143


to be threadedly received in threaded bores


153


. Likewise, the second collar portion


144


has a pair of holes


147


therethrough that are adapted to be coaxially aligned with a pair of threaded bores


155


in the secondary collar portion


154


. Second clamping bolts


149


are inserted through holes


147


to be threadedly received in threaded holes in the secondary collar portion


154


. Sec

FIGS. 5 and 6

. When clamped to the mast


15


as shown in

FIGS. 5 and 6

, the first gear segment


146


and the second gear segment


156


form a driven gear


159


.




The motorized antenna alignment device


100


of this embodiment further includes a clamping arm assembly


160


that serves to clamp onto the mounting bracket assembly


40


. As can be seen in

FIG. 1

, the clamping assembly


160


is rigidly attached to the housing


114


of the motor


110


by a vertically extending support member


116


that is attached to the motor housing


114


by, for example, screws or other fasteners (not shown). The clamping assembly


160


may be pivotally pinned to the vertical support member for pivotal travel about an axis F—F. See FIG.


3


. The clamping assembly


160


includes a first clamping arm


162


and a second clamping arm


166


. A first thumbscrew


164


is threaded through the first clamping arm


162


as shown in

FIG. 3. A

second thumbscrew


168


is threaded into the second clamping arm


166


. The clamping assembly


160


may be clamped onto the mounting bracket assembly


40


by threading the first and second clamping screws (


164


,


168


) into engagement with the mounting bracket assembly


40


. Also in this embodiment, to provide support to the motor


110


when the alignment assembly


100


is affixed to the mast


15


and mounting bracket assembly


40


as shown in

FIG. 1

, a lower support member


170


is attached to the lower end of the motor housing


112


. The lower support member


170


is adapted to slide around the top surfaces of the first and primary collar portions (


142


,


152


). Those of ordinary skill in the art will appreciate that the motor


110


could be attached to other portions of the antenna utilizing other types of fastener arrangements without departing from the spirit and scope of the present invention. For example, the motor


110


could conceivably be attached or clamped to a portion of the antenna dish


20


as opposed to being clamped to a portion of the mounting bracket assembly


40


.




In this embodiment, the motor


110


may receive power from a source of alternating current


117


through cord


115


. Motor


110


may be controlled by a remote control hand held unit


190


that sends control signals to motor controls


119


. Hand held unit


190


may be equipped with a conventional GPS unit


192


to enable the user to determine the longitude and latitude of the installation location. In addition, the hand held unit


190


may be equipped with a compass


194


that may be used to determine the azimuth orientation of the antenna


10


.




This embodiment of the antenna alignment device


100


of the present invention may be used in the following manner. The installer clamps the clamping assembly


160


onto the mounting bracket assembly


40


by turning the first and second clamping screws (


164


,


168


) into clamping engagement with the mounting bracket assembly


40


. Thereafter, the gear assembly


130


is clamped onto the mast


15


with the clamping screws (


145


,


149


) to attach it to the mast


15


as shown in

FIGS. 5 and 6

. As can be seen in

FIG. 6

, the driven gear


159


of the gear assembly


130


is in meshing engagement with the driver gear


120


and the lower support member


170


is supported on the collar portion


142


. After the alignment device


100


is affixed to the mast


15


and mounting bracket assembly


40


as shown in

FIGS. 1 and 3

, the azimuth locking bolts


44


on the mounting bracket assembly


40


are loosened. The motor


110


is then powered to rotate the driver gear


120


about the driven gear


159


of the gear assembly


130


and cause the entire antenna


10


to rotate about the mast


15


. Once the installer determines that the antenna


10


has been moved to the desired azimuth orientation utilizing conventional alignment methods and techniques, the motor


110


is stopped and the azimuth locking bolts


44


are locked in position. Thereafter, the alignment device


100


is unclamped from the mounting bracket assembly


40


and the gear assembly


130


is removed from the mast


15


to enable those devices to be used to align other antennas.




The embodiments of the present invention have been described herein for use in connection with a conventional antenna of the type depicted in FIG.


1


. The skilled artisan will readily appreciate, however, that these embodiments of the present invention could be successfully employed with a myriad of other types of antennas and antenna mounting bracket configurations without departing from the spirit and scope of the present invention. Thus, the scope of protection afford to these embodiments of the present invention should not be limited to use in connection with the specific type of antenna depicted in FIG.


1


.




The embodiments of the present invention represent a vast improvement over prior motorized antenna alignment devices. Due to its portable nature, the present invention is well-suited for use by installers that typically install and orient several antennas. The various embodiments of the present invention may be quickly attached to an existing antenna installation to orient the antenna in a desired azimuth orientation and thereafter be removed from the antenna for use in connection with another antenna that differs from the first antenna. Those of ordinary skill in the art will, of course, appreciate that various changes in the details, materials and arrangement of parts which have been herein described and illustrated in order to explain the nature of the invention may be made by the skilled artisan within the principle and scope of the invention as expressed in the appended claims.



Claims
  • 1. A device for orienting an antenna having a selectively adjustable mounting bracket assembly attached to a mast, said device comprising:a gear assembly attached to the mast and extending therearound; and a motorized driver gear in meshing engagement with said gear assembly and removably attached to the mounting bracket such that activation of said motorized driver gear rotates the mounting bracket about the mast to a desired position and wherein said motorized driver gear is detachable from the mounting bracket without moving the mounting bracket from said desired position.
  • 2. The device of claim 1 wherein said motorized driver gear is operably attached to a motor that is removably clamped to the antenna mounting bracket.
  • 3. The device of claim 2 wherein said motor is attached to the antenna mounting bracket by a clamping assembly that comprises:a vertical support arm attached to the motor; first and second clamping arms attached to the vertical support arm; a first thumbscrew attached to said first clamping arm; and a second thumbscrew attached to said second clamping arm.
  • 4. The device of claim 3 wherein said first and second clamping arms are pivotally attached to said vertical support arm.
  • 5. The device of claim 1 wherein said gear assembly is removably clamped to the mast.
  • 6. The device of claim 5 wherein said gear assembly comprises:a first gear assembly having first and second collar portions and a first gear segment; a second gear assembly having primary and secondary collar portions and a second gear segment, said primary and secondary collar portions connectable to said first and second collar portions to clamp a portion of the mast therebetween such that said first and second gear segments cooperate to form said driven gear.
  • 7. The device of claim 1 wherein said motorized driver gear is operably attached to a motor that is removably clamped to the antenna mounting bracket and wherein said motor has a support member for supporting engagement with said gear assembly.
  • 8. The device of claim 2 wherein said motor is powered with alternating current from a source of alternating current and is controlled with a handheld unit.
  • 9. The device of claim 8 wherein said handheld unit further comprises a global positioning unit.
  • 10. The device of claim 8 wherein said handheld unit further comprises a compass.
  • 11. A portable antenna alignment device for orienting an antenna having a mounting bracket attached to a mast, said alignment device comprising:a motor; a clamping, assembly attached to said motor, said clamping assembly removably clamping said motor to a portion of the antenna; a driver gear attached to said motor; a first gear assembly having a first gear segment; a second gear assembly having a second gear segment, said second gear assembly attachable to said first gear assembly to clamp a portion of the antenna mast therebetween such that said first and second gear segments form a driven gear about the mast for meshing engagement with said driver gear.
  • 12. The device of claim 11 wherein said clamping assembly comprises:a vertical support arm attached to the motor; first and second clamping arms attached to the vertical support arm; a first thumb screw threadedly attached to said first clamping arm; and a second thumb screw threadedly attached to said second claming arm.
  • 13. The device of claim 12 wherein said first and second clamping arms are pivotally attached to said vertical support arm.
  • 14. The device of claim 11 wherein said first gear assembly has first and second collar portions and a first gear segment and wherein said second gear assembly has primary and secondary collar portions and a second gear segment, said primary and secondary collar portions connectable to said first and second collar portions to clamp a portion of the mast therebetween such that said first and second gear segments cooperate to form said driven gear.
  • 15. The device of claim 11 wherein said motor is powered with alternating current from a source of alternating current and is controlled with a handheld unit.
  • 16. The device of claim 15 wherein said handheld unit further comprises a global positioning unit.
  • 17. The device of claim 15 wherein said handheld unit further comprises a compass.
  • 18. A method of orienting an antenna in a desired azimuth orientation, said method comprising:supporting a mast in a vertical orientation such that the mast is plumb; affixing a mounting bracket that is attached to the antenna to the mast, the mounting bracket having azimuth locking members that permit the antenna to be pivoted to a desired azimuth position when loosened and thereafter retain the antenna in the desired azimuth position when the locking members are locked in position; affixing a motor having a driver gear to the antenna; affixing a driven gear to the mast such that the driven gear is in meshing engagement with the driven gear; loosening the azimuth locking members to permit the antenna to be pivoted to a desired azimuth orientation; powering the motor to rotate the antenna to the desired azimuth position; locking the azimuth locking members to retain the antenna in the desired azimuth orientation; and detaching the motor from the antenna.
  • 19. The method of claim 18 further comprising detaching the driven gear from the mast.
  • 20. The method of claim 18 wherein said affixing the motor to the antenna comprises clamping the motor to the antenna.
  • 21. The method of claim 18 wherein said affixing the driven gear comprises clamping the driven gear to the mast.
  • 22. A method of orienting an antenna in a desired azimuth orientation, said method comprising:mounting a mast in a vertical orientation; affixing a mounting bracket that is attached to the antenna to the mast, the mounting bracket having azimuth locking members that permit the antenna to be pivoted to a desired azimuth position when loosened and thereafter retain the antenna in the desired azimuth position when the locking members are locked in position; clamping a motor having a driver gear to a portion of the mounting bracket; clamping a driven gear to the mast in meshing engagement with the driver gear; loosening the azimuth locking members to permit the portion of the mounting bracket to which the motor is clamped to pivot about the mounting mast; powering the motor to pivot the portion of the mounting bracket to which the motor is clamped to a desired azimuth orientation; locking the azimuth locking members to retain the antenna in the desired azimuth orientation; detaching the motor from the antenna; and detaching the driven gear from the mast.
  • 23. A device for orienting an antenna having a mounting bracket assembly attached to a mast, said device comprising:a motorized driver gear removably attachable to the antenna adjacent the mast and operably attached to a motor that is removably clamped to the antenna mounting bracket; and a gear assembly removably clamped to the mast and extending therearound, said gear assembly having first and second collar portions and a first gear segment, said gear assembly further having a second gear assembly having primary and secondary collar portions and a second gear segment, said primary and secondary collar portions connectable to said first and second collar portions to clamp a portion of the mast therebetween such that said first and second gear segments cooperate to form a driven gear in meshing engagement with said motorized driven gear.
  • 24. The device of claim 23 wherein said motor is attached to the antenna mounting bracket by a clamping assembly that comprises:a vertical support arm attached to the motor; first and second clamping arms attached to the vertical support arm; a first thumbscrew attached to said first clamping arm; and a second thumbscrew attached to said second clamping arm.
  • 25. The device of claim 24 wherein said first and second clamping arms are pivotally attached to said vertical support arm.
  • 26. The device of claim 23 wherein said motor is powered with alternating current from a source of alternating current and is controlled with a handheld unit.
  • 27. The device of claim 26 wherein said handheld unit further comprises a global positioning unit.
  • 28. The device of claim 26 wherein said handheld unit further comprises a compass.
  • 29. A device for orienting an antenna having a mounting bracket assembly attached to a mast, said device comprising:a gear assembly attached to the mast and extending therearound, said gear assembly having a driven gear; and a motorized driver gear removably attachable to the antenna adjacent the mast and in meshing engagement with said motorized driven gear, said motorized driver gear is operably attached to a motor that is removably clamped to the antenna mounting bracket and wherein said motor has a support member for supporting engagement with said gear assembly.
  • 30. The device of claim 29 wherein said motor is attached to the antenna mounting bracket by a clamping assembly that comprises:a vertical support arm attached to the motor; first and second clamping arms attached to the vertical support arm; a first thumbscrew attached to said first clamping arm; and a second thumbscrew attached to said second clamping arm.
  • 31. The device of claim 30 wherein said first and second clamping arms are pivotally attached to said vertical support arm.
  • 32. The device of claim 29 wherein said motor is powered with alternating current from a source of alternating current and is controlled with a handheld unit.
  • 33. The device of claim 32 wherein said handheld unit further comprises a global positioning unit.
  • 34. The device of claim 32 wherein said handheld unit further comprises a compass.
US Referenced Citations (39)
Number Name Date Kind
110434 Clarke Dec 1870 A
2575917 Johnson Jul 1949 A
2611566 Landis Dec 1950 A
2667317 Trebules Jan 1954 A
4126865 Longhurst et al. Nov 1978 A
4237465 Shibano et al. Nov 1980 A
4495706 Kaminski Jan 1985 A
4626864 Micklethwaite Dec 1986 A
4691207 Timineri Sep 1987 A
4726259 Idler Feb 1988 A
4833932 Rogers May 1989 A
5065969 McLean Nov 1991 A
5276972 Staney Jan 1994 A
5351060 Bayne Sep 1994 A
5469182 Chaffee Nov 1995 A
5473335 Tines Dec 1995 A
5561433 Chaney et al. Oct 1996 A
5646638 Winegard et al. Jul 1997 A
5647134 Chou Jul 1997 A
5657031 Anderson et al. Aug 1997 A
5734356 Chang Mar 1998 A
5760739 Pauli Jun 1998 A
5829121 Shoemaker et al. Nov 1998 A
5870059 Reynolds Feb 1999 A
5894674 Feldman Apr 1999 A
5903237 Crosby et al. May 1999 A
5920291 Bosley Jul 1999 A
5945945 Wagner et al. Aug 1999 A
5977922 Hemmingsen, II Nov 1999 A
5992809 Sweere et al. Nov 1999 A
5999139 Benjamin et al. Dec 1999 A
6023247 Rodeffer Feb 2000 A
6031508 Ishizuka et al. Feb 2000 A
6037913 Johnson Mar 2000 A
6208314 Bourquin Mar 2001 B1
6229480 Shintani May 2001 B1
6262687 Bai et al. Jul 2001 B1
6285338 Bai et al. Sep 2001 B1
6331839 Grenell Dec 2001 B1