The present disclosure relates generally to a basket lifting assembly of a refrigerator appliance for the motorized lifting and lowering of the basket.
Refrigerator appliances generally include a cabinet that defines one or more insulated chambers for the receipt and storage of food items. Certain refrigerator appliances include a fresh food chamber for storage of food items above the freezing temperature of water and a freezer chamber for storage of food items below the freezing temperature of water. The fresh food chamber and the freezer chamber can be positioned at various locations relative to each other within the cabinet. Consumers generally prefer chilled chambers that facilitate visibility and accessibility of food items stored therein. However, the arrangement of the fresh food chamber and the freezer chamber within a refrigerator appliance's cabinet can affect food items' visibility and accessibility.
In certain refrigerator appliances, commonly referred to as side-by-side style refrigerator appliances, the fresh food chamber is positioned next to the freezer chamber within the cabinet. Such a configuration can permit easy access to food items stored on doors of the refrigerator appliances. In other refrigerator appliances, commonly referred to as bottom mount refrigerator appliances, the freezer chamber is positioned below the fresh food chamber in the cabinet. Such a configuration can provide a wide fresh food chamber or a wide freezer chamber. However, in either case, space near the floor of the insulated chambers is utilized, making access difficult particularly for elderly and infirm users.
Many refrigerator appliances address this problem by providing drawers in the lower portions of the insulated chambers so that users need to reach both down to the bottom of the refrigerator and inward toward the back of the refrigerator. While such solutions do aid in accessibility, they do not address the fundamental problem that items stored within the drawers are too low to reach without requiring many users to bend down or kneel.
Accordingly, a refrigerator appliance having a slidable drawer with a motorized basket lifting assembly would be useful in increasing accessibility to contents of the refrigerator appliance.
Aspects and advantages of the invention will be set forth in part in the following description, or may be obvious from the description, or may be learned through practice of the invention.
In one aspect of the present disclosure, a refrigerator appliance is provided. The refrigerator appliance may include a cabinet, an insulated chamber mounted within the cabinet, and a basket lifting assembly. The basket lifting assembly may include a support frame assembly, a basket movably attached to the support frame assembly, a first linkage, a motor, and a second linkage. The support frame assembly may be at least partially contained within the insulated chamber and further include a horizontal rail. The first linkage may be movably attached to the support frame assembly in mechanical communication with the basket. The motor may be connected to the first linkage, wherein actuation of the motor causes rotation of the first linkage. The second linkage may further include a first arm, a second arm, and a guide post. The first arm of the second linkage may have a first end and a second end, the first end of the first arm connected to the first linkage. The second arm of the second linkage may have a first end and a second end, the first end of the second arm connected to the basket and the second end of the second arm connected to the second end of the first arm at an arm joint defining an angle of less than 180 degrees. The guide post may be positioned between the second linkage and the horizontal rail and be connected to the second linkage at the arm joint.
In another aspect of the present disclosure, a basket lifting assembly is provided. The basket lifting assembly may include a support frame assembly, a basket movably attached to the support frame assembly, a first linkage, a motor, and a second linkage. The support frame assembly may include a horizontal rail. The first linkage may be movably attached to the support frame assembly in mechanical communication with the basket. The motor may be connected to the first linkage, wherein actuation of the motor causes rotation of the first linkage. The second linkage may further include a first arm, a second arm, and a guide post. The first arm of the second linkage may have a first end and a second end, the first end of the first arm connected to the first linkage. The second arm of the second linkage may have a first end and a second end, the first end of the second arm connected to the basket and the second end of the second arm connected to the second end of the first arm at an arm joint defining an angle of less than 180 degrees. The guide post may be positioned between the second linkage and the horizontal rail and be connected to the second linkage at the arm joint.
These and other features, aspects, and advantages of the present invention will become better understood with reference to the following description and appended claims. The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
A full and enabling disclosure of the present invention, including the best mode thereof, directed to one of ordinary skill in the art, is set forth in the specification, which makes reference to the appended figures.
Reference now will be made in detail to embodiments of the invention, one or more examples of which are illustrated in the drawings. Each example is provided by way of explanation of the invention, not limitation of the invention. In fact, it will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the scope or spirit of the invention. For instance, features illustrated or described as part of one embodiment can be used with another embodiment to yield a still further embodiment. Thus, it is intended that the present invention covers such modifications and variations as come within the scope of the appended claims and their equivalents
In order to aid understanding of this disclosure, several terms are defined below. The defined terms are understood to have meanings commonly recognized by persons of ordinary skill in the arts relevant to the present invention. The terms “includes” and “including” are intended to be inclusive in a manner similar to the term “comprising.” Similarly, the term “or” is generally intended to be inclusive (i.e., “A or B” is intended to mean “A or B or both”). The terms “first,” “second,” and “third” may be used interchangeably to distinguish one component from another and are not intended to signify location or importance of the individual components. Terms such as “inner” and “outer” refer to relative directions with respect to the interior and exterior of the refrigerator appliance, and in particular the food storage chamber(s) defined therein. For example, “inner” or “inward” refers to the direction towards the interior of the refrigerator appliance. Terms such as “left,” “right,” “front,” “back,” “top,” or “bottom” are used with reference to the perspective of a user accessing the refrigerator appliance. For example, a user stands in front of the refrigerator to open the doors and reaches into the food storage chamber(s) to access items therein.
Turning now to the figures,
Generally, refrigerator appliance 10 includes a housing or cabinet 12 that defines a vertical direction V, a lateral direction L, and a transverse direction T (see, e.g.,
Cabinet 12 defines one or more insulated chambers 99, which may include a separate fresh food chamber 100 and freezer chamber 102 for receipt of food items for storage. In particular, the fresh food chamber 100 is positioned at or adjacent the top portion 14 of cabinet 12. Freezer chamber 102 is positioned below fresh food chamber 100 along the vertical direction V (e.g., at or adjacent the bottom 16 of cabinet 12). It should be appreciated, however, that the fresh food and freezer chambers 100, 102, may be positioned at another suitable location within the refrigerator appliance 10.
The refrigerator appliance 10 may also include a dispenser assembly 132 for dispensing liquid water or ice. The dispenser assembly 132 includes a dispenser 134 positioned on or mounted to an exterior portion of the refrigerator appliance 10, e.g., on the left refrigerator door 50. In addition, as will be described in detail below, the refrigerator appliance 10 may include a basket lifting assembly 300 (e.g., as shown in the embodiment of
Refrigerator appliance 10 further includes a controller 144 to generally regulate refrigerator appliance 10. Controller 144 may be provided in communication (e.g., electrically coupled) with a dispenser assembly 132. In exemplary embodiments, a control panel is included as general purpose I/O (“GPIO”) device or functional block. In other exemplary embodiments, a control panel is included with multiple input components, such as one or more of a variety of electrical, mechanical or electro-mechanical input devices including rotary dials, push buttons, touch pads, and touch screens. The control panel may be in communication (e.g., electrically coupled) with controller 144 via one or more signal lines or shared communication busses.
Controller 144 includes memory and one or more processing devices such as microprocessors, CPUs or the like, such as general or special purpose microprocessors operable to execute programming instructions or micro-control code associated with operation of refrigerator appliance 10. The memory can represent random access memory such as DRAM, or read only memory such as ROM or FLASH. The processor executes non-transitive programming instructions stored in the memory. The memory can be a separate component from the processor or can be included onboard within the processor. Alternatively, controller 144 may be constructed without using a microprocessor, e.g., using a combination of discrete analog or digital logic circuitry (such as switches, amplifiers, integrators, comparators, flip-flops, AND gates, and the like) to perform control functionality instead of relying upon software.
In some embodiments, refrigerator appliance 10 may include a handle 152 attached to a door 154. Basket lifting assembly 300, including door 154, may be slidably mounted to cabinet 12. Accordingly, a user may utilize handle 152 to basket lifting assembly 300 in and out of freezer chamber 102 along the transverse direction T.
Generally, door 154 extends in the lateral direction L between a first side 218 and a second side 220, and in the vertical direction V between a top 214 and a bottom 216. As shown, door 154 includes an outer surface 158 (e.g., directed away from cabinet 12) and an inner surface 160 (e.g., directed toward cabinet 12) that extend in the lateral direction L from first side 218 to second side 220. When assembled, door 154 may selectively cover a cabinet opening 162 permitting access to freezer chamber 102.
As shown in
Turning to
In some embodiments, a primary gasket 172 is positioned on or attached to door 154 (e.g., on an inner surface 160 of door 154). As the door 154 moves towards the closed position, the door 154 may contact and compress the primary gasket 172 against a corresponding outer surface of cabinet 12. Specifically, the primary gasket 172 may seal against the outer surface of the cabinet 12 to enclose freezer chamber 102. In alternative embodiments, the primary gasket 172 may be positioned on the outer surface 158 of the cabinet 12 and, as the door 154 moves towards the closed position, the cabinet 12 may compress the primary gasket 172 against the inner surface 160 of door 154. More specifically, the primary gasket 172 may seal against the inner surface 160 of the door 154. It should be appreciated that the primary gasket 172 may be comprised of any suitable material. For example, in one embodiment, the primary gasket 172 may be comprised of a resilient rubber or plastic material.
Turning now to
Referring to the embodiment of
Further, support frame assembly 302 may also comprise a mounting frame 336. In some embodiments, mounting frame 336 is connected to second support bracket 334 and oriented vertically. In embodiments employing mounting frame 336, mounting frame 336 may define horizontal rail 304, as discussed above with regard to support frame assembly 302 generally and further detailed below. In alternative embodiments, basket lifting assembly 300 may be stationary (e.g., not slidable) with respect to freezer chamber 102 (or other insulated chamber 99). In some such embodiments, second support bracket 334 would be unnecessary and mounting frame 336 may connect directly to first support bracket 332. In other alternative embodiments, first support bracket 332 and mounting frame 336 form a unitary structure mounted either within freezer chamber 102 or to door 154.
As shown in
In some embodiments, basket 306 is included with basket lifting assembly 300. For instance, basket 306 may be slidably mounted to cabinet 12 for receipt within freezer chamber 102. Optionally, basket 306 may be attached to second support bracket 334 such that basket 306 may be further actuated for synchronized movement with door 154.
In certain embodiments, motor 310 may be attached (e.g., fixedly attached) to a coupler 309, which in turn may be attached (e.g., fixedly attached) to a shaft 311. Shaft 311 may extend through mounting frame 336, thus anchoring it to the basket lifting assembly 300. First linkage 308 may then be connected to shaft 311. Thus, actuation of motor 310 results in rotation of coupler 309, shaft 311, and first linkage 308. By virtue of the anchoring of shaft 311 discussed above, first linkage 308 may be movably attached to support frame assembly 302 (via mounting frame 336).
As also shown in the embodiments of
Referring again to
Basket lifting assembly 300 may be optionally or selectively actuated by user input (e.g., voice activation, pressing of a button, or touch-screen selection). The user input is conveyed to controller 144. When the user input reflects the user's intention to raise or lower basket 306, controller 144 may actuate motor 310 in the appropriate direction. In the event that the user elects to raise basket 306 from a lowered position, basket lifting mechanism 300 may begin in the position shown in
In optional embodiments, basket lifting assembly 300 further includes an overload protection to ensure motor 310 may not be overloaded. Overload protection may employ a load cell (not pictured) positioned at one or load-bearing connections (e.g., between first linkage 308 and second linkage 312 or between second linkage 312 and basket 306). A load cell may measure the load created by lifting of basket 306 and its contents. The load cell may be configured to correlate the load applied to the current consumption (e.g., at motor 310) and cut off actuation of the motor 310 in the event of an overload.
Referring now to
In certain embodiments, basket lifting assembly 300 further includes a first lift state sensor 346 and a second lift state sensor 348. As shown in
In other embodiments, first lift state sensor 346 may be positioned in alignment with first linkage 308 at a lowered position of basket 306 and second lift state sensor 348 may be position in alignment with first linkage 308 at a raised position of basket 306. Similar to the previously discussed embodiment, first lift state sensor 346 and second lift state sensor 348 may alert controller 344 to cease actuation of motor 306 upon being triggered by first linkage 308.
First lift state sensor 346 and second lift state sensor 348 may be limit switches in some embodiments. In yet other embodiments, one or both of first lift state sensor 346 and second lift state sensor 348 are Hall-effect sensors, which sense the magnetic field of magnets mounted on or in, for example, guide post 330 or first linkage 308 in the embodiments discussed above. Certain embodiments include additional lift state sensors (e.g., between the first lift state sensor 346 and second lift state sensor 348), such as to monitor a proxy of the position of basket 306 while being lifted or lowered to ensure that the process is proceeding as expected.
In some embodiments, such as shown in
This written description uses examples to disclose the invention, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. The patentable scope of the invention is defined by the claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they include structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal languages of the claims.