This invention relates generally to flooring tools, and in particular to motorized floor stripper machines.
Floor stripper machines are used to strip flooring materials that are glued down to concrete or wood subfloors.
Different forms of linkage between the cam and the blade carrier can be used to produce different forms of motion in the blade. In some early stripper machines, the linkage is formed by the cam element simply contacting the blade carrier from behind and pushing the blade carrier in a forward direction. In later machines, the cam is inserted in a plate to form a linkage, and the plate is connected to the blade carrier by way of fasteners. When only a single plate is used to form the linkage to the blade carrier, the orbital motion of the cam is transferred directly to the blade carrier. As a result, the blade carrier and blade move in an orbital motion with both left-to-right and forward and backward components. However, it is mainly the forward component that is useful in stripping the flooring. The left to right motion causes extra vibration, and can combine with the centrifugal force of the motor itself to cause the machine to turn towards the user's right. In such case, the user has to counteract the turning by steering the machine against it, which requires extra effort. For this reason, alternative forms of linkage have been developed to minimize the undesirable left to right motion, and others have been developed to produce only forward and backward motion in the blade carrier.
In many of the existing motorized floor stripper machines, the linkages between the cam element and the blade carrier element have durability problems, while others produce undesirable left to right motion in the blade carrier which must be controlled. For example, pushing linkages present durability problems. The constant rubbing of the cam against a back side surface of a blade carrier wears out these parts, and the springs necessary to hold the blade carrier in contact with the cam also wear out quickly. It may be preferable to insert the cam within a plate to form the linkage, and then use the plate to impart the motion of the blade carrier. However, inserting the cam into such a plate produces the undesirable left to right motion when the plate is connected to the blade carrier. Some prior art motorized floor stripper machines use a linkage in which the cam is connected to a first drive plate, and the first drive plate is connected to a second drive plate fixedly connected to the blade carrier by way of an additional pivot. In conjunction with the additional pivot, these machines include costly slide bearings to eliminate any undesirable left to right motion in the blade carrier.
To limit the left to right portion of the motion produced by the cam, as just mentioned, some prior art motorized floor stripper machines have included slide bearings with a long arm or rod that moves forward and backward within a sleeve. Other prior art motorized floor stripper machines reciprocate an arm portion of their blade carrier element within a channel of a housing. Still others use a control arm connected to one side of the frame that forms a forward pivot to limit the left to right motion. However, devices employing slide bearings, reciprocating arms, or a control arm are easily damaged if the machine is dropped on its blade carrier element. The problem of dropping of the machine on its blade carrier can often occur on a jobsite. The machines are normally transported around a job by rocking them back on their rear wheels and pushing them. If the user is not careful to lower the machine gently back down onto the blade carrier, then bending of slide bearings, blade carrier arms, or control arms can result. If these elements become bent, they will no longer function properly and can be very expensive to repair.
To prevent the blade carrier or connected components from being damaged if the front of the stripper machine is dropped, it would be desirable to have some sort of shock absorber between the frame of the machine and the blade carrier that could absorb some of the impact. Some existing motorized floor stripper machines use elastomeric shock absorbers, but a problem with these shock absorbers is that they sometimes do not provide sufficient resistance for efficient stripping of tough or hard materials. For example, in the stripping of hardwood or ceramic tile floors, the resistance encountered by the blade and transferred back to the shock absorbers by the blade carrier may be greater than the shock absorbers can counteract. As a result, despite the continuing motion of the cam, the blade carrier recoils against the shock absorbers, which give and allow the blade carrier to move backwards. In this situation, the forward motion of the blade is effectively stopped. Therefore, if the machine is to employ shock absorbers between the frame and the blade carrier, it would be desirable to additionally provide a means to guide the motion of the blade carrier so that it can move only with the motion of the cam. This would improve the effectiveness of the stripping motion of the machine.
The blade carrier of prior art stripper machines have typically been made in two parts: a bottom blade carrier and a top blade clamp. The top blade clamp is fastened down on top of the blade using screws that thread into the bottom blade carrier. A problem with many of these devices is that they use a blade carrier that has a rectangular shape and is quite wide, about as wide as the blade itself. However, if a substantially narrower blade is installed on such a wide blade carrier, the blade carrier itself may contact areas of the floor that have not yet been stripped by the narrower blade. This can create significant unnecessary resistance.
As an example, as shown in
An additional problem with existing blade carriers that have only two wide set blade clamp holes for clamping a single type of wide blade is that they do not function well with narrower blades. If the blade clamp fasteners are not positioned at least close in proximity to the width of the blade (more ideally through holes or slots provided in the actual blade), the blade can slip backward when it contacts tough or hard materials. Furthermore, if the upper blade clamp is not clamped down very tightly at least in the area of the blade, the upper blade clamp can get debris built-up beneath it that can form a wedge and cause damage.
For these reasons, it would be desirable for the blade carrier and blade clamp to include a number of mounting positions for a number of blades of various widths, particularly blades having substantially narrower widths than prior art blades. Furthermore, it would be desirable for the outer edge of the blade clamp and blade carrier to include a shape that would allow the blade carrier and blade clamp to follow behind a substantially narrower blade without contacting areas of the floor which are not yet stripped, such as either side of a previously stripped row of hardwood or ceramic tile flooring.
The figures depict various embodiments of the present invention for purposes of illustration only. One skilled in the art will readily recognize from the following discussion that alternative embodiments of the structures and methods illustrated herein may be employed without departing from the principles of the invention described herein.
As shown in
As shown in
Cam 1050 is connected to blade carrier 1200 by a linkage including bearing block 1210, pivot plate 1220, pivot pin 1230, and support plate 1240. When cam 1050 is turned by key 1030, pivot plate 1220 develops an orbital motion. In turn, blade carrier 1200 would also be moved in a corresponding orbital motion by pivot pin 1230.
Fastened to blade carrier 1200 at blade carrier top surface 1250 are two ball bearings 1260. Ball bearings 1260 are fastened to blade carrier top surface 1250 by nuts 1270 and bolts 1280. Ball bearings 1260 are positioned at a height above blade carrier top surface 1250 by spacers 1290 mounted on bolts 1280.
As shown in
Embodiments of the stripper machine 1000 produces motion that is forward and backward only (or substantially only forward and backward), and additionally includes shock absorbers 1120 to absorb the impact of blade carrier 1200 against the floor if the front of the machine is dropped. If the front of the machine is dropped, causing blade carrier 1200 to impact a floor surface, shock absorbers 1120 absorb the impact to reduce or prevent damage to blade carrier 1200 and connected parts.
As shown in
Blade carrier 1200 and blade clamp 1400 have relieved edges 1202 and 1402 respectively, both relieved at the same angle. These relieved edges allow the blade carrier 1200 and blade clamp 1400 to enter a row where material has already been stripped by a narrow blade, such as blade 1300, without having these edges contact the edges of unstripped materials to either side.
As used herein, a blade carrier assembly includes a blade carrier having a top surface for mounting a blade, a blade clamp, and fasteners fastening the blade clamp to the blade carrier. As one example, as shown in
As shown in
Wider blades such as blade 1350 can be mounted at blade carrier outer holes 1205, blade slots 1351, and blade clamp outer holes 1405. Blades as wide as blade 1350 or wider can be mounted with these outer holes.
As shown in
Blade carrier 1200 is mounted on shock absorbers 1120, which absorb impact if the front of the stripper machine is dropped on its front end, causing blade carrier 1200 to impact a floor surface. As shown in
The foregoing description of the embodiments of the invention has been presented for the purpose of illustration; it is not intended to be exhaustive or to limit the invention to the precise forms disclosed. Persons skilled in the relevant art can appreciate that many modifications and variations are possible in light of the above disclosure. The language used in the specification has been principally selected for readability and instructional purposes, and it may not have been selected to delineate or circumscribe the inventive subject matter. It is therefore intended that the scope of the invention be limited not by this detailed description, but rather by any claims that issue on an application based hereon. Accordingly, the disclosure of the embodiments of the invention is intended to be illustrative, but not limiting, of the scope of the invention, which is set forth in the following claims.
This application is a continuation of U.S. application Ser. No. 14/788,036, filed Jun. 30, 2015, which is incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 14788036 | Jun 2015 | US |
Child | 16393843 | US |