The present patent document claims the benefit of priority to European Patent Application No. 12305304.3, filed Mar. 15, 2012, and entitled “MOTORIZED HEIGHT ACCESS DEVICE FOR TOWER CRANES,” the entire contents of which are incorporated herein by reference.
The present invention concerns suspended load lifting apparatus, and more particularly tower cranes. This invention is even more particularly relevant to a motorized height access device for a tower crane enabling:
A tower crane conventionally comprises a vertical mast at the top of which is mounted a boom turning about a vertical axis. Along the boom moves a carriage, below which the load to be lifted is suspended from a hook. The driving cab of such a tower crane is usually formed of a cabin situated in the region at or near the top of the mast and thus at a great height above the ground.
In most tower cranes access to the driving cab for the crane driver is by way of rail-ladders installed inside the mast of the tower crane. There may be a vertical ladder with a protective safety cage, or “crinoline,” or multiple oblique ladders connecting resting landings disposed at regular vertical intervals.
The main drawbacks of this traditional mode of access are the necessity for a large physical effort by the crane driver to ascend the mast to the cabin and the long time necessary to ascend to the cabin and conversely to descend to the ground, which reduces the productivity of the site on which the tower crane is used.
To avoid these drawbacks motorized height access solutions have already been proposed. These solutions typically consist of providing a “lift” or elevator that is installed and moves either on the outside of the mast or on the inside of the mast.
Motorized solutions on the outside of the mast still have many drawbacks:
The patent documents CH665825 and EP 0 175 052, as well as the patent document WO 2005/087645, provide examples of motorized solutions on the outside of the mast in which the lift cabin on the outside of the mast is accessed by a working platform.
Accordingly, motorized solutions inside the mast of the tower crane appear preferable for avoiding the drawbacks indicated above. Such solutions are described in the patent documents WO 92/18412 and FR 2 936 236.
In the case of the document WO 92/18412, a simple lift cabin is mounted and moves inside a safety cage that is installed inside the mast. The lift cabin is guided along the ladder and is moved by a rack and pinion mechanism, the rack preferably being carried by the ladder.
In the case of the document FR 2 936 236, a lift cabin is mounted to move on a vertical guide rail inside the mast, the guide rail being equipped with a rack for moving the lift cabin. This lift cabin is surmounted by a working platform surrounded by a guard rail. The lift cabin and its working platform cannot be separated. The mast of the tower crane is formed by the superposition of a certain number of mast elements and the combination consisting of the lift cabin and the working platform can be located entirely inside the bottom mast element, where it is installed for the transport of the dismantled tower crane. A trapdoor through which a vertical ladder passes provides access between the inside of the lift cabin and the working platform surrounding the cabin.
In such an embodiment, however, the permanent fastening together of the working platform and the lift cabin has drawbacks including, in particular:
Embodiments of the present invention aim to avoid these drawbacks by providing an improved motorized height access device particularly suitable for the practical requirements of a tower crane. In addition, embodiments of the present invention disclose a motorized height access solution inside the mast that is safe and adaptable in its uses, particularly by facilitating the operations of assembling and dismantling the tower crane.
To this end, various embodiments pertain to a motorized height access device for a tower crane. The motorized height access device includes a lift cabin that is installed inside the mast of the tower crane that is movable vertically along the mast. The lift cabin is surrounded by a working platform with a guard rail. The working platform is configured to be arranged inside the mast of the tower crane. The working platform is separably connected to the lift cabin through a coupling device configured for non-permanent connection of the working platform to the lift cabin and for immobilizing the working platform relative to the mast at a required height. Such motorized height access devices permit the use of the lift cabin travel separately from the working platform.
Thus, an aspect of the invention comprises a working platform that surrounds the lift cabin and is separable from the lift cabin. Embodiments of such a platform make it possible:
A further advantage of embodiments of the invention include the fact that when the lift cabin is raised or lowered the working platform optionally remains in position at the top of the mast under the boom and proximate the driving cab, allowing persons to circulate more safely in that area. Without the working platform coupled to the lift cabin, the overall weight and size of the lift cabin to be vertically moved is less than it would otherwise have been with the working platform coupled to the lift cabin.
Moreover, when the tower crane is in service, the lift cabin may return to the base of the tower crane while the working platform remains immobilized in the upper part of the mast. The tower crane then has a smaller cross-section exposed to winds.
For transporting the tower crane to a worksite the lift cabin coupled to the working platform may be brought with the working platform within the overall size of lowered to and contained within the bottom of the mast element, which helps to protect the device during transportation of the tower crane.
Of course, embodiments of the invention retain all of the advantages of height access solutions positioned inside the mast, particularly the protection of the lift cabin when it is in vertical motion within the mast. As noted, positioning the lift cabin and working platform within the mast reduces the risk of a collision with a load suspended from the hook.
The coupling device provides a non-permanent connection of the working platform to the lift cabin and for immobilizing the working platform relative to the mast at a required height may be manually operated or motorized. The manual coupling device must be accessible from inside the lift cabin, from the working platform, or, where applicable, via a trapdoor. Regardless of whether or not the coupling device is manually operable or motorized, it should be simple and safe to operate.
In one embodiment, the lift cabin includes a bottom trapdoor at the level of the lift cabin's floor, a top trapdoor provided in the lift cabin's roof, and an inclined or vertical interior ladder, while the working platform has a platform floor with an opening equipped with a trapdoor positioned to open onto the top trapdoor of the lift cabin. The interior ladder of the lift cabin may be provided with an intermediate ledge, particularly those embodiments that include an inclined ladder. The interior ladder enables a passenger in the lift cabin to access the working platform from the lift cabin. The interior ladder optionally is configured to limit the directions from which the bottom trapdoor is accessed, minimizing the risk that something or someone (such as a passenger that has taken ill) will block access to the trapdoor in the floor or prevent the trapdoor from being opened from below.
The manual coupling device for non-permanent connection of the working platform to the lift cabin may include a latch that can be actuated manually via the top trapdoor of the lift cabin. When the latch is not engaged to couple the working platform to the lift cabin the latch is configured to engage a ladder within the mast of the tower crane.
In some embodiments, the latch is connected to an electrical switch adapted to determine a reduced speed or a non-reduced speed of movement of the lift cabin. The electrical switch permits a non-reduced speed when the latch is not connecting the working platform to the lift cabin. Thus, just the lift cabin can move at a relatively high speed; conversely, when the working platform is connected to the lift cabin the electrical switch permits the connected lift cabin-working platform to move only at low or reduced speed.
In one embodiment, the aforementioned manual coupling devices includes a lever mechanism that is actuated by a rod that can be manipulated from inside the lift cabin.
The invention will be better understood in the light of the following description with reference to the appended diagrammatic drawings representing, by way of example, an embodiment of this height access device for a tower crane.
Referring to
The mast 3 comprises a certain number of superposed mast elements 8, the top-most mast element 8 carrying a pivot 9 on which the boom 4 is rotatably mounted.
The tower crane 1 also has, in its upper part 50, a driving cab 10. In the example shown, the driving cab 10 is carried by the boom 4 and situated on one side of the distributor boom, or jib, 5.
Embodiments of the invention relate to a height access device 60 that enables personnel and, in particular, the crane driver to access the upper part 50 of the tower crane 1 and, in particular, the driving cab 10.
The height access device 60 comprises a lift cabin 11 and a working platform 12 on top of the lift cabin 11. The lift cabin 11 and the working platform 12 are here accommodated inside the mast 3 and are configured to be movable vertically along the mast 3, over practically all of the height of this mast 3.
The working platform 12 is separably connected to the lift cabin 11. Thus,
Referring to
The working platform 12 also includes a platform floor 21 surrounded by a guard rail 22. In the platform floor 21 of the working platform 12 there is provided an opening equipped with a trapdoor 23 positioned to open onto the top trapdoor 18 of the lift cabin 11.
The lift cabin 11 and the working platform 12 are both equipped, on one of their sides, with respective guide rollers 24 and 25 provided for positioning and rolling of the lift cabin 11 and the working platform 12 on common guide rails (not illustrated) installed in the mast 3. The guide rails may comprise the rails or stiles of a rail-ladder 26 (
A motor is provided for propelling the lift cabin 11 along the guide rails. Control stations or consoles are provided for controlling the ascent and descent movements of the lift cabin 11, in particular with:
These first, second and third control stations 27, 27.2, and 27.3 may transmit control instructions by a wired connection or by a wireless connection to eliminate the problems of winding and unwinding cables as the lift cabin 11 ascends and descends.
As already mentioned, the working platform 12 is separably connected to the lift cabin 11, which enables the working platform 12 to move vertically with the lift cabin 11 or to be immobilized at a certain height whilst the lift cabin 11 is able to move. To this end, the lift cabin 11 and the working platform 12 are provided with a coupling device 70/80.
In the embodiment shown, the coupling device 70/80 is manually operated and comprises elements 29 projecting above the roof 16 of the lift cabin 11 and complementary elements 30 projecting below the platform floor 21 of the working platform 12. A lever mechanism 31 controls the coupling and/or uncoupling of the elements 29 and 30. This lever mechanism 31 can be actuated by a rod 32 that can be manipulated from inside the lift cabin 11.
Because the working platform 12 is separable from the lift cabin 11, the coupling device 70/80 is configured for immobilizing the working platform 12 at a required height on the mast 3. An embodiment of the coupling device 70/80 takes the form of a latch 33 that can be engaged between the rungs 34 of the rail-ladder 26, as illustrated in
The height access device 60 further includes various safety units: end of travel sensors operating when the lift cabin 11 reaches either one of the top and bottom position relative to mast 3, cabin ascent and descent obstacle sensor, overload sensor, cabin overspeed sensor and emergency brake, sensors associated with the various trapdoors 17, 18, and 23 that prohibit moving the lift cabin 11 if any of the trapdoors 17, 18, and 23 is not correctly closed, a manual back-up system usable in the event of failure of the motor, etc.
The lift cabin 11 and the working platform 12 are advantageously further equipped with a light source or sources, preferably with emergency electrical power supply, providing in particular for minimum lighting of the first 27, second 27.2 and third 27.3 control stations.
Referring to the various figures, the operation of the height access device 60 described above is as follows:
A first operating mode is the so-called “normal” mode, which applies during use of the tower crane 1 on a site, in particular to enable the crane driver to ascend to the top of the mast 3 in order to access the driving cab 10, and conversely to enable the crane driver to descend to the ground at the end of a shift. The lift cabin 11 is then separated from the working platform 12 and the working platform 12 is immobilized in the highest position, i.e. at the top of the mast 3 just below the boom 4.
To ascend at the start of a shift the crane driver, as appropriate:
In its bottom position (see
The ascent of the lift cabin 11 is then controlled by way of the first control station 27 situated in the lift cabin 11. The crane driver can then:
The crane driver can then exit the lift cabin 11 via the top of the lift cabin 11 by climbing the interior ladder 19 and passing through the open top trapdoor 18 of the lift cabin 11 and the platform trapdoor 23 of the working platform 12. The crane driver thus reaches the platform floor 21 of the working platform 12 and from there can reach the boom 4 and, more particularly, the driving cab 10 or driving station.
At the end of the day (or other period) of work, the crane driver having left the driving cab 10 returns to the working platform 12 that has remained immobilized in the top position. From there the crane driver can access the lift cabin 11 directly if the latter has remained in the top position or ordering the lift cabin 11 from the third control station 27.3 situated on the working platform 12 if the lift cabin 11 is not present. The operations described are then effected in reverse order to those for ascending until the lift cabin 11 returns to and stops in the bottom position (
Another operating mode shown in
The lift cabin 11 is then fastened to the working platform 12. Initially, the height access device 60 comprising the lift cabin 11 and the working platform 12 is situated entirely within the bottom mast element 8.
As the mast 3 rises with the connection of additional mast elements 8, the height access device 60 can be brought by vertical movement to the level of the top mast element 8 at that time, i.e. the latest assembled mast element 8. One or two operators can then take up their station on the working platform 12 to receive the next mast element 8 in order to fit the members connecting this new mast element with the preceding one. After the adjacent mast elements 8 have been coupled together, the lift cabin 11-working platform 12 assembly is moved upward inside the new mast element, and so on. The process is continued until the mast 3 has reached the required height and the working platform 12 is finally immobilized at the top of the finished mast 3.
It will be noted that in this other operating mode the speed at which the lift cabin 11 moves may be lower than in the normal mode as previously noted. Moreover, the manner in which the height access device 60 manages end of travel/limit of travel decisions is different as appropriate because the top position varies and depends on the number of mast elements 8 already in place; the manner of detection and decision making may notably be based on detecting the presence of the rail-ladder 26.
In an analogous manner, the lift cabin 11-working platform 12 assembly is usable during the dismantling of the mast 3, being progressively lowered as and when mast elements 8 are removed and being brought to the level of the next mast element 8 to be removed.
Also in this other operating mode, and therefore during assembling or dismantling, the lift cabin 11 remains temporarily separable from the immobilized working platform 12 to enable the ascent of persons to the platform or return of these persons to the ground.
A manual switch provided on the first control station 27 situated in the lift cabin 11 commands the change from the normal operating mode to the assembly/dismantling mode.
Finally, referring to
In the coupled position (
As
Clearly, these elements can operate both in normal operation of the tower crane and in the assembly/dismantling modes, as described above.
The scope of the invention, as defined by the appended claims, is not exceeded:
Number | Date | Country | Kind |
---|---|---|---|
12305304 | Mar 2012 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
3080981 | Kuschel | Mar 1963 | A |
3166154 | Titzel | Jan 1965 | A |
3439467 | Partlow | Apr 1969 | A |
5159993 | St-Germain | Nov 1992 | A |
7665582 | Lindh | Feb 2010 | B2 |
8585324 | Palfinger | Nov 2013 | B2 |
20030213647 | St-Germain | Nov 2003 | A1 |
20030217984 | Lissandre | Nov 2003 | A1 |
20050006177 | Korchagin et al. | Jan 2005 | A1 |
20070119331 | Korchagin et al. | May 2007 | A1 |
20070271863 | Lindh | Nov 2007 | A1 |
20080230321 | Csaszar | Sep 2008 | A1 |
Number | Date | Country |
---|---|---|
665825 | Jun 1988 | CH |
0175052 | Mar 1986 | EP |
2 468 541 | May 1981 | FR |
2 936 236 | Mar 2010 | FR |
WO 9218412 | Oct 1992 | WO |
WO 2005087645 | Sep 2005 | WO |
Entry |
---|
Definitions of ‘manual’, ‘lock’, ‘couple’, ‘join’, and ‘connect’ found in Action The American Heritage® Dictionary of the English Language, Fourth Edition copyright © 2000 by Houghton Mifflin Company. Updated in 2009. Published by Houghton Mifflin Company. All rights reserved. |
I Search Report for EP 12 305 304.3 (priority document). |
Number | Date | Country | |
---|---|---|---|
20130240297 A1 | Sep 2013 | US |