This disclosure relates, in general, to motorized transportation devices and, in particular, to a motorized wearable device for personal transportation.
Motorized vehicles, such as motorized scooters and mopeds, allow convenient transportation and can also provide personal enjoyment during leisure time. Conventional motorized vehicles, however, are difficult to use and require extensive practicing to ensure safety and efficiency. Many local communities require a license to operate the conventional motorized vehicles. When not in use, the conventional motorized vehicles require a parking space for proper storage. In addition, the conventional motorized vehicles are expensive and may require significant maintenance costs.
In an embodiment, a wheel assembly comprises a wheel, a transmission assembly mounted on the wheel, and a motor coupled to the wheel through the transmission assembly. The motor includes an axle extending in a radial direction of the wheel. The transmission assembly transmits a rotational motion of the axle to a rotational motion of the wheel.
In another embodiment, a motorized transportation device comprises a base and at least one wheel assembly. The at least one wheel assembly comprises a wheel rotationally coupled to the base, a transmission assembly mounted on the wheel, and a motor coupled to the wheel through the transmission assembly. The motor includes an axle extending in a radial direction of the wheel. The transmission assembly transmits a rotational motion of the axle to a rotational motion of the wheel. The motorized transportation device further comprises a control system for controlling the motor.
In another embodiment, a wheel assembly comprises a wheel having a ring gear disposed on an inner circumference of the wheel and a motor disposed within the ring gear. The motor has a shaft and a gear mounted on an end of the shaft. The gear of the motor engages the ring gear of the wheel to transmit a rotational motion of the shaft to a rotational motion of the wheel.
The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate several embodiments of the disclosure and together with the description, serve to explain the principles of the disclosure.
Reference will now be made in detail to the present embodiments of the disclosure, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.
The drawings schematically show the structures of the motorized transportation device and its components. The shape of the device and its components may not be the same as shown in the drawings. A person having ordinary skill in the art should appreciate that the device and its components can be embodied with various shapes that can achieve the same functions.
Device 10 further includes one or more wheel assemblies, such as wheel assemblies 16 and 18, rotatably coupled to base 12. Wheel assemblies 16 and 18 have substantially same diameters and may be coupled to opposite sides of base 12. Wheel assemblies 16 and 18 may each have an electrical motor integrated therein for driving corresponding wheel assemblies 16 or 18. Alternatively, only one wheel assembly 16 or 18 includes the electrical motor. In some other embodiments, device 10 may have more than two wheel assemblies, for example, two wheel assemblies on each side. One or more wheel assemblies may have the electrical motor.
Transportation device 10 may receive control signals from a controller and vary the speed and direction of transportation device 10 according to the control signals. The controller may be embedded in base 12 of transportation device 10. The controller may include one or more tilt sensors and gyroscopic sensors that detect an angular position with respect to gravity. When a user wearing the transportation device 10 leans forward, the sensors may detect that, and the controller controls the motors to drive the wheel assemblies 16 and 18 to accelerate. When the user leans backward, the controller controls the motors to drive the wheel assemblies 16 and 18 to decelerate. According to an alternative embodiment, the control logic may be reversed. That is, a detection of forward leaning by the sensor may cause device 10 to decelerate, whereas a detection of backward leaning may cause device 10 to accelerate. The sensors may be analog or digital sensors as known in the art.
Transportation device 10 is suitable for use on surfaces, such as paved or unpaved roads in urban and rural areas. The user may wear transportation device 10 to walk, scoot, or roll without the need for removing shoe 14. Transportation device 10 can be easily removed, stored, and carried in a backpack accessory when not in use. Transportation device 10 may further include a handle flap 24 which may be made of rubber material, leather material, or the like.
According to one embodiment, device 10 may be attached and secured to the user's shoe via a locking mechanism including one or more straps or cables that wrap around portions of the shoe or foot.
According to a further embodiment as shown in
Wheel assemblies 16 and 18 are omitted in
In some embodiments, as shown in
According to a further embodiment as shown in
According to a still further embodiment, the locking mechanisms illustrated in
Motor 206 includes a rotatable shaft or axle 214 and a gear 212 disposed at a distal end of axle 214. Gears 212 and 216 are engaged and in mesh. Accordingly, when motor 206 is supplied with electrical power, gear 212 is rotated by axle 214, driving ring gear 216 to rotate. Gears 212 and 216 form a transmission assembly configured to transmit a rotational motion of axle 214 to a rotational motion of ring gear 216. Rim 220 and tire 202 are fixed with ring gear 216 and rotate together with ring gear 216. Gears 212 and 216 are chosen to provide a desired gear ratio between motor 206 and ring gear 216.
According to a further embodiment, gears 212 and 216 are bevel gears. In some embodiments, when gears 212 and 216 are engaged and in mesh, shaft 214 of motor 206 extends in a radial direction of wheel assembly 200. A person having ordinary skill in the art should appreciate that gears 212 and 216 may be other types of gears, such as spiral bevel gears, hypoid gears, planetary gears, etc. A person having ordinary skill in the art should appreciate that employing other types of gears may allow or require structure variations. For example, if hypoid gears are used, the axes of the two gears may not intersect. In other words, the shaft 214 may not extend in a radial direction of the gear 216. In addition, a person having ordinary skill in the art should appreciate that other designs or arrangements of gear sets (such as using more than two gears) may be used to achieve the same functionalities and results. Those are choices of designs and are encompassed by the present disclosure.
In some embodiments, gears 212 and 216 may be angled. A person having ordinary skill in the art should appreciate that each gear may be formed with a pitch angle. The axes of gears 212 and 216 may be perpendicular to each other. In some other embodiments, the axes of gears 212 and 216 may not be perpendicular to each other.
Motor 206 may be a DC motor, which receives DC electrical power from an electrical power source, such as a battery pack on-board transportation device 10. The battery pack (406 in
Motor 206 has a housing 218 with a length L that is sufficiently small so that motor 206 may be disposed within the opening 224 of ring gear 216 without interfering with the motion of ring gear 216. Housing 218 of motor 206 may be mounted to base 12 of transportation device 10.
Additionally, wheel assembly 200 may further include a bearing 204 coupled with rim 220. Bearing 204 may be a rolling-element bearing, such as a ball bearing or a roller bearing, including an outer race 208 and an inner race 210 that are rotatable with respect to each other. Bearing 204 may be mounted on rim 220 through one of outer race 208 or inner race 210. The other one of outer race 208 or inner race 210 may be mounted to base 12 of transportation device 10. Thus, bearing 204 provides a rotatable coupling between rim 220 and base 12. When motor 206 drives ring gear 216 to rotate, rim 220 and tire 202 may be rotated with respect to base 12, thereby driving transportation device 10. As shown in
According to a further embodiment as shown in
According to an alternative embodiment, motor cover 602 may be secured to support structure 502 via a snap-in mechanism or other mechanical means, such as welding or gluing. According to another embodiment, motor 206 may be attached to support structure 502 through motor housing 218. As a result, motor cover 602 may be omitted. According to still another embodiment, support structure 502 may be provided by base 12 or other structures of device 10.
In this embodiment, outer race 208 of bearing 204 is mounted to rim 220 or formed as a part of rim 220. When motor 206 drives rim 220 through gears 212 and 216, rim 220 and outer race 208 rotate with respect to motor 206 and inner race 210, thereby driving transportation device 10 to move.
According to a further embodiment, wheel assemblies 16 and 18 may each include a quick release mechanism. The quick release mechanism include, for example, a coupling between base 12 and one of race 208 or 210 that may be engaged or disengaged by the user. The quick release mechanism allows removal of the wheel assemblies without tools for easy assembling, transportation, and shipping.
According to a further embodiment, wheel assemblies 16 and 18 may each be coupled to base 12 through a suspension. The suspension may allow the user's ankle to rotate while maintaining the contacts between the traveled surface and wheel assemblies 16 and 18. In one embodiment, the suspension may be a passive suspension such that, when the user leans laterally, the suspension may cause base 12 to tilt towards left or right accordingly. In another embodiment, the suspension may include an active component that may automatically cause base 12 to tilt towards left or right according to, for example, a slope of the traveled surface. Alternatively, the active component may allow the user to control the tilting of base 12 to left or right as desired. In a further embodiment, the suspension may be provided by tire 202, which may be an airless tire.
According to a further embodiment, wheel assembly 200 has a size (e.g., diameter and width) suitable for transportation device 10 that is wearable by the user, e.g., on foot. The size and weight of wheel assembly 200 can provide adequate ground clearance between base 12 and the traveled surface. According to a still further embodiment, wheel assembly 220 has a diameter of 5-7 inches, for example, 165 mm (6.5 inches). The wheel assembly 220 may be smaller, for example, for kids' size. The size of wheel assembly 200 may vary according to the size of the component disposed therein and other factors, such as conditions of the traveled surface and the needs of the user.
Wheel assembly 250 further includes a rim 220 mounted on an outer race of bearing 204. A bevel gear 216 is mounted on rim 220, while another bevel gear 212 is mounted on an end of a shaft 214 of motor 206. The rim 220, bevel gear 216, and the wheel are concentric. The shaft 214 of the motor 206 extends in a radial direction of the bevel gear 216. Gears 212 and 216 are engaged, when motor 206 is fully installed and secured by motor bracket 252 to base 12 (
Specifically, control system 100 includes one or more sensors 404, a battery pack 406 including a plurality of battery cells connected in a series/parallel configuration, a battery charging port 408, and the controller 412. Controller 412 may include a computer-readable medium, such as a memory, for storing computer codes and processor for executing the computer codes. The processor may cause controller 412 to receive signals from sensor 404 and generate commands to control motor 206.
Sensors 404 are coupled to controller 412. As discussed above, sensors 404 can detect instructions from the user or motions and gestures provided by the user. For example, sensors 404 may detect the user leaning forward and generate signals accordingly instructing device 10 to accelerate. Sensors 404 may also detect the user leaning backward and generate signals accordingly, instructing device 10 to decelerate. Sensors 404 may also detect the user standing balanced and generate signals accordingly, instructing device 10 to maintain the current speed. A person having ordinary skills in the art can configure other control instructions upon studying the disclosure.
Sensors 404 transmit the signals, generated according to the detected instructions, motions, and/or gestures, to controller 412 for controlling and operating motor 206. Controller 412 controls the speed of rotation of motor 206 and the direction of travel (i.e., forward or backward) of the transportation device 10 according to the received control signals.
Battery pack 406 may be charged by external power sources through battery charging port 408. Battery pack 406 may include an indicator, such as a LED device or a display screen, for indicating various status of battery pack 406, such as charging, fully charged, low power, etc.
By incorporating motor 206 in wheel assembly 200 or 250, wheel assembly 200 forms a compact structure that may be easily installed, replaced, and serviced. Because motor 206 does not take up spaces within base 12, base 12 and the entire transportation device 10 may be made relatively more compact and light, saving materials and costs.
According to a further embodiment as shown in
According to an alternative embodiment, a pressure sensor may be integrated with suspension 306 to generate a pressure signal according to a pressure applied on suspension 306 by the user. Motor controller 412 may receive the pressure signal and determine a change in the pressure on suspension 306 according to the pressure signal. For example, when the user leans forward, motor controller 412 may detect a decrease in the pressure on suspension 306. When the user leans backward, motor controller 412 may detect an increase in the pressure on suspension 306. According this change in the pressure, motor controller 412 may control device 10 to accelerate or decelerate, or move forward or backward.
Alternatively, the rear wheel assembly 308 including the suspension 306 may include a switch to control the movement of the device. For example, when the suspension is pressed to a certain point, it turns on a switch and the device can start to move. Different degrees of compression of the suspension may turn on different switches corresponding to different speed levels of the device. One degree of the compression may correspond to stopping the motor and/or breaking the wheels.
According to a further embodiment, a plurality of ring gears may be mounted to rim 220 shown in
Still alternatively, the gears 212 and 216 may be replaced by a gear box coupled between motor 206 and rim 220. The gear box may include an input shaft coupled to motor 206 for receiving a rotational input therefrom and an output shaft coupled to rim 220 for driving rim 220 to rotate. The gear box may further include a plurality of gears that allow the user to adjust the gear ratio by selecting different gears.
According to a still alternative embodiment, the transmission assembly between motor 206 and rim 220 may include a friction transmission means for transmitting the rotational motion from motor 206 to rim 220 by way of friction. The friction transmission means may include a friction disc mounted on rim 220 and a roller mounted on shaft 214 of motor 206. The roller, when driven by shaft 214, causes the friction disc and rim 220 to rotate by way of friction.
According to another embodiment, wheel assemblies 16 and 18 may be the tank-track style assemblies. For example, each wheel assembly may include a plurality of wheels driving a metal or rubber track. The wheels may be embedded within the wheel assemblies and driven by a motor. Upon reading this disclosure, one of ordinary skill in the art will recognize that other variations of wheel assemblies 16 and 18 may be implemented to drive device 10 using motor 206.
For example,
Outer race 808 includes one or more grooves along its inner rim. Inner race 810 includes one or more grooves along its outer rim that correspond to the grooves of inner race 810. When outer race 808 and inner race 810 are coupled with each other, the corresponding grooves thereof form one or more circular channels 804A and 804B running along the circumferential direction of bearing 804. A plurality of rolling elements 826 may be disposed within circular channels 804A and 804B, so that outer race 808 and inner race 810 may be rotated with respect to each other. Rolling elements 826 may be balls, needles, cylindrical pins, conical pins, and the like. Although
In an alternative embodiment, rolling elements 826 may be omitted so that outer race 808 and inner race 810 of bearing 804 have a direct contact with each other. A lubricant may be applied between outer race 808 and inner race 810 so that to reduce friction.
In an embodiment, bearing 804 includes various structural features, through which other components are assembled to form wheel assembly 800. For example, outer rim of outer race 808 includes a mounting surface 830 for mounting circular rim 820. Mounting surface 830 may include a groove in the circumferential direction of wheel assembly 800 for receiving and securing rim 820. Alternatively, rim 820 may be mounted on outer race 808 through interference fit.
Rim 820 may include surface features for receiving and securing tire 802. For example, rim 820 may have grooves or cutouts 820A on its side surfaces, which receive corresponding protruding elements of tire 802. Tire 802 may be made of an elastic material, such as rubber or plastic. Tire 802 may be mounted on rim 820 by temporarily deforming portions of tire 802 so as to place the protruding elements into grooves 820A. In an alternative embodiment, rim 820 may be omitted, so that tire 802 may be directly mounted on outer race 808. Outer race 808 may have features similar to those of rim 820 for receiving and securing tire 802.
Returning to bearing 804, outer race 808 and inner race 810 may further form a circular cavity 828 in the circumferential direction. Ring gear 816 may be disposed on an inner surface of cavity 828. Drive gear 812, which is coupled to motor 806 through shaft 814 and supported by shaft 814, is disposed within cavity 828 and meshed with ring gear 816. Shaft 814 extends in a radial direction of wheel assembly 800 and protrudes through an opening of inner race 810, so that a rotational motion of shaft 814 is transmitted to a rotational motion of wheel assembly 800. Circular cavity 828 forms an enclosed space to keep out dirt, water, and moisture and prevent lubricant from leaking out, thereby protecting the gears therein.
As further shown in
In an embodiment, the upper housing formed by elements 818A and 818B and the lower housing form by elements 818C and 818D each have a substantially cylindrical shape with a cylindrical opening. The inner diameter of the upper housing is slightly greater than the outer diameter of the lower housing. Motor 806 may be disposed within the cylindrical opening of the lower housing and secured therein by screws or interference fit. The lower housing, with motor 806 disposed therein, may be partially disposed with the cylindrical opening of the upper housing. In an alternative embodiment, motor 806 may be disposed and affixed within the upper housing, which is then partially disposed within the lower housing.
In a further embodiment as shown in
During operation of wheel assembly 800, inner race 810 and motor housing 818 with motor 806 disposed therein remain stationary with respect to base 12 of device 10. Drive gear 812 drives ring gear 816 to rotate, thereby causing tire 802, rim 820, and outer race 808 to rotate with respect to base 12. Accordingly, drive gear 812 and ring gear 816 convert the rotational motion of shaft 814 to rotational motion of tire 802, which then causes device 10 to move forward or backward.
In a further embodiment, as shown in
Inner race 810 may be formed by a first portion 810A and a second portion 810B. First portion 810 may have a substantially cylindrical body that forms a radially inner wall 828D for circular cavity 828. Second portion 810B may have a circular frame or a disc body that forms a rim for inner race 810.
First portion 808A and second portions 808B of outer race 808 may be joined by welding, adhesive, screws, or other attaching means. Similarly, first portion 810A and second portion 810B of inner race 810 may also be joined by welding, adhesive, screws, or other attaching means. First portion 810A and second portion 810B of inner race 810 may both include frames 822 that form a cage for securing motor housing 828.
The components and structures described herein may be modified or rearranged to reduce material usage, minimize weight and size, improve strength and durability, and simplify assembling and disassembling, without exceeding the scope of this disclosure. Other embodiments of the disclosure will be apparent to those skilled in the art from consideration of the specification and practice of the disclosure disclosed herein. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the disclosure being indicated by the following claims.
This application claims the benefit of U.S. Provisional Application No. 61/928,406, filed Jan. 16, 2014, the content of which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3265147 | Coordes | Aug 1966 | A |
3387502 | Letourneau | Jun 1968 | A |
3581682 | Kontranowski | Jun 1971 | A |
3710965 | Joosten | Jan 1973 | A |
5913937 | Lin | Jun 1999 | A |
6059062 | Staelin | May 2000 | A |
6199652 | Mastroianni | Mar 2001 | B1 |
6321863 | Vanjani | Nov 2001 | B1 |
6345678 | Chang | Feb 2002 | B1 |
6428050 | Brandley et al. | Aug 2002 | B1 |
6688447 | Liu | Feb 2004 | B1 |
6974399 | Lo | Dec 2005 | B2 |
7392995 | Lin | Jul 2008 | B2 |
7475611 | Yang | Jan 2009 | B2 |
7699130 | Palmer | Apr 2010 | B2 |
8096378 | Xie | Jan 2012 | B2 |
8167074 | Tsiyoni | May 2012 | B1 |
8991532 | Wei | Mar 2015 | B2 |
20080053724 | Chiu | Mar 2008 | A1 |
20080066979 | Carter | Mar 2008 | A1 |
Number | Date | Country |
---|---|---|
2012158199 | Nov 2012 | WO |
Number | Date | Country | |
---|---|---|---|
20150196831 A1 | Jul 2015 | US |
Number | Date | Country | |
---|---|---|---|
61928406 | Jan 2014 | US |