Field of the Invention
The present invention generally relates to wireless communications. More specifically, the present invention relates to mountable antenna elements for dual band antenna arrays.
Description of the Related Art
In wireless communications systems, there is an ever-increasing demand for higher data throughput and reduced interference that can disrupt data communications. A wireless link in an Institute of Electrical and Electronic Engineers (IEEE) 802.11 network may be susceptible to interference from other access points and stations, other radio transmitting devices, and changes or disturbances in the wireless link environment between an access point and remote receiving node. The interference may degrade the wireless link thereby forcing communication at a lower data rate. The interference may, in some instances, be sufficiently strong as to disrupt the wireless link altogether.
In one particular example, the wireless device 100 may be a handheld device that receives input through an input mechanism configured to be used by a user. The wireless device 100 may process the input and generate a corresponding RF signal, as may be appropriate. The generated RF signal may then be transmitted to one or more receiving nodes 110-140 via wireless links. Nodes 120-140 may receive data, transmit data, or transmit and receive data (i.e., a transceiver).
Wireless device 100 may also be an access point for communicating with one or more remote receiving nodes over a wireless link as might occur in an 802.11 wireless network. The wireless device 100 may receive data as a part of a data signal from a router connected to the Internet (not shown) or a wired network. The wireless device 100 may then convert and wirelessly transmit the data to one or more remote receiving nodes (e.g., receiving nodes 110-140). The wireless device 100 may also receive a wireless transmission of data from one or more of nodes 110-140, convert the received data, and allow for transmission of that converted data over the Internet via the aforementioned router or some other wired device. The wireless device 100 may also form a part of a wireless local area network (LAN) that allows for communications among two or more of nodes 110-140.
For example, node 110 may be a mobile device with WiFi capability. Node 110 (mobile device) may communicate with node 120, which may be a laptop computer including a WiFi card or wireless chipset. Communications by and between node 110 and node 120 may be routed through the wireless device 100, which creates the wireless LAN environment through the emission of RF and 802.11 compliant signals.
Efficient manufacturing of wireless device 100 is important to provide a competitive product in the market place. Manufacture of a wireless device 100 typically includes construction of one or more circuit boards and one or more antenna elements. The antenna elements can be built into the circuit board or manually mounted to the wireless device. When mounted manually, the antenna elements are attached to the surface of the circuit board and typically soldered although those elements may be attached by other means.
When surface-mounted antenna elements are used in a wireless device, the impedance of the antenna elements should be matched to achieve optimal efficiency of the wireless device. Previous surface-mount antenna elements require circuitry components for matching the antenna element impedance. For example, wireless device circuit boards are designed to have circuitry components such as capacitors and inductors which match impedance of the surface-mounted antenna elements. Additionally, some surface mounted antenna elements require additional elements to create a capacitance that matches the impedance of the antenna element. Manufacture of wireless devices with surface-mount antenna elements and separate impendence matching components is inefficient and increases manufacturing costs for the device.
A first embodiment of a mountable antenna element for transmitting a radio frequency signal includes a top surface, a radio frequency feed, a plurality of legs, and an impedance matching element. The top surface is in a first plane. The radio frequency (RF) feed extends from the top surface and is coupled to an RF source. The impedance matching element extends from the top surface. The impedance matching element can achieve an impedance for the antenna element when the antenna element radiates the RF signal. The top surface, RF feed element, plurality of legs, and impedance matching element are constructed as a single object.
In a second claimed embodiment, a printed circuit board mountable reflector configured to reflect an RF signal includes a stem, an element connected to the stem and a least one coupling plate coupled to a base of the stem. The stem is configured to extend away from the PCB and the element extends perpendicular to the stem. The at least one coupling plate is configured to be coupled to the PCB. A coupling plate is coupled to a base of the second end and configured to be coupled to the mounting surface.
In a second claimed embodiment, a wireless device for transmitting a radiation signal can include a circuit board, a mountable antenna element and a radio modulator/demodulator. The circuit board is configured to receive a first mountable antenna element for radiating at a first frequency.
The mountable antenna is coupled to the circuit board and includes an RF feed, a top surface, a plurality of legs, and an impedance matching element. The plurality of legs may couple the first mountable antenna element to the PCB. The impedance matching element configured to form a capacitance with respect to a ground layer in the PCB. The radio modulator/demodulator is configured to provide an RF signal to the mountable antenna element at the first frequency.
A mountable antenna element constructed as a single element or object from a single piece of material can be configured to transmit and receive RF signals, achieve optimized impedance values, and operate in a concurrent dual-band system. The mountable antenna element may have one or more legs, an RF signal feed, and one or more impedance matching elements. The legs and RF signal feed can be coupled to a circuit board. The impedance matching elements can be utilized to create a capacitance with a portion of the circuit board thereby optimizing impedance of the antenna element at a desired operating frequency. The mountable antenna can also include one or more stubs that enable it for use in concurrent dual band operation with the wireless device. Because the mountable antenna element can be installed without the need for additional circuitry to match impedance and can be constructed as a single object or as a single piece of material, the mountable antenna element allows for more efficient manufacturing.
The one or more impedance matching elements of the mountable antenna element are configured to achieve optimized impedance for the mountable antenna element. The impedance matching elements are part of the single object comprising the antenna element, and positioned downward away from a top surface of the mountable antenna and towards a circuit board ground plane. The one or more impedance matching elements may each achieve a capacitance with respect to the ground plane, wherein the capacitance achieves the impedance matching for the antenna element. The impedance matching for the mountable antenna allows for a cleaner and more efficient signal to be broadcast (and received) at a desired frequency for the antenna element.
The legs of the antenna element may each contain one or more stubs in a close proximity of the leg. The stubs are configured to create an open circuit in the leg for a particular frequency. The open circuit prevents current from being induced up the leg and into the mountable antenna element thereby affecting radiation of a smaller sized antenna due to a larger antenna element associated with the leg. The larger mountable antenna element is “transparent,” or does not interfere with a smaller mountable antenna element, as a result of preventing an induced current in the larger antenna element due to radiation from the smaller antenna element.
A reflector may also be mounted to a circuit board having a mountable antenna element. The reflector can reflect radiation emitted by the antenna element. The reflector can be constructed as an element or object from a single piece of material and mounted to the circuit board in a position appropriate for reflecting radiation emitted from the antenna element. The reflector can include one or more pins and a plate for installing the reflector to the circuit board. When reflector pins are inserted into designated holes in the circuit board and the reflector plate is in contact with a circuit board pad, the reflector may stand on its own. As a result, the process of securing the reflector to the circuit board is made easier.
The data I/O module 205 of
The antenna selector 220 of
The mountable antenna and reflectors 250 include at least one antenna element and at least one reflector and can be located at various locales on the circuit board of a wireless device, including at the periphery of the circuit board. A mountable antenna element may also be used in a wireless device without a reflector. Each set of mountable antenna and reflectors 250 may include an antenna element configured to operate at one or more frequencies. Each mountable antenna may be configured to radiate at a particular frequency, such as 2.4 GHz or 5.0 GHz. To minimize any potential interference between antennas radiating at different frequencies within a wireless device, mountable antennas radiating at different frequencies can be placed as far apart as possible on a circuit board, for example at opposite corners of a circuit board surface as is illustrated in
An antenna element can be coupled to the circuit board 300 at coupling pads 310 and 340. A coupling pad is a pad connected to circuit board circuitry (for example a switch 230 or ground) and to which the antenna element can be connected, for example via solder. The antenna element can include a coupling plate having a surface that, when mounted to the circuit board, is roughly parallel and in contact with the circuit board coupling pads 310 and 340. A coupling plate is an antenna element surface (e.g., a surface at the end of an antenna element leg) that may be used to connect the antenna element to a couple pad. Antenna elements having a coupling plate (e.g., coupling plate 470) are illustrated in
A circuit board mounting pad 310 can include one or more coupling pad holes 315. A coupling pad hole 315 is an aperture or opening that extends from the surface into one or more layers of the circuit board. The coupling pad holes can receive an antenna element pin to help the secure antenna element to the circuit board 300. The antenna element can be positioned in place on the circuit board 300 by inserting one or more pins of the antenna element into a circuit board coupling pad hole 315. Once one or more antenna element pins are inserted into the appropriate coupling pad holes, the antenna element can be secured to the circuit board by means of soldering or some other coupling operation. An antenna element with one or more pins and a coupling plate is discussed in more detail with respect to
A reflector can be mounted to the circuit board 300 at coupling area 320. Coupling area 320, as illustrated in
The holes 330 of coupling area 320 are formed by an aperture or opening that extends from the surface into one or more layers of the circuit board and can be used to position a reflector in an appropriate position over coupling area 320. When a reflector has one or more pins inserted into corresponding holes 330 and a mounting plate (e.g., mounting plate 720 of
A reflector that can maintain an upright position without external support, for example by a machine or person, allows for easy attachment of the reflector to the circuit board 300. A reflector with one or more pins and a coupling plate is discussed in more detail with respect to
An antenna element and reflector can be designed in combination to operate at a desired frequency, such as 2.4 gigahertz (GHz) or 5.0 GHz.
The antenna element legs can be used to couple the antenna element to circuit board 300 (
When the antenna element coupling plate 470 is connected to circuit board coupling pad 340 and a switch connecting the coupling pad 340 to radio modulator/demodulator 215 is open, no radiation pattern is transmitted or received by the mounted antenna element. When the switch is closed, the mounted antenna element is connected to radio modulator/demodulator 205 and may transmit and receive RF signals.
The antenna element stubs 450 and 460 may increase the performance of the wireless device 100 when utilizing different antenna elements to operate at multiple frequencies simultaneously, which may be referred to as concurrent dual band operation. The mountable antenna elements that operate at a smaller frequency may be larger in size than the mountable antenna elements that operate at a larger frequency. The larger mountable antenna elements, in such an instance, can interfere with the operation of the smaller antenna elements. For example, when a smaller sized antenna element (e.g., the antenna element of
To prevent the induced current, stubs 450 and 460 may create an open circuit when a radiation signal is received at the operating frequency of the smaller sized antenna element. Hence, when antenna element 400 is configured as a 2.4 GHz antenna element and operating on the same circuit board as a 5.0 GHz antenna element, stubs 450 and 460 are excited by the received 5.0 GHz radiation signal and form an open circuit at the base (the end of the leg that connects to the circuit board 300) of leg 455. The open circuit is created at the base of leg 455 at 5.0 GHz. By forming an open circuit for a 5.0 GHz signal at the base of leg 455, no current is induced through leg 455 by radiation of the higher frequency antenna element, and the larger sized antenna element 400 operating at a lower frequency does not affect the radiation of the smaller antenna element operating at a higher frequency.
The length of the stubs 450 and 460 can be chosen at time of manufacture based on the frequency of the antenna element from which radiation is being received. The total length for current traveling from the tip of one stub to the tip of the other stub can be about one half the wavelength of the frequency at which the open circuit is to be created (e.g., about three centimeters total travel length to create an open circuit for a 5.0 GHz signal). For an antenna leg with two stubs, each stub can be a little less than half of the corresponding wavelength (providing for most of the length in the stubs and a small part of the length for traveling between the stubs along a top surface portion).
Extending downward from near the center of the top surface 405, 410, 415, 420 are impedance matching elements 425, 430 and 435. Impedance matching elements 425, 430, 435 as illustrated in
Impedance matching elements 425-435 extend downward towards a ground plane within circuit board 300 and form a capacitance between the impedance matching element and the ground plane. By forming a capacitance with the ground plane of the circuit board 300, the impedance matching elements achieve impedance matching at a desired frequency of the antenna element. To achieve impedance matching, the length of the impedance matching element and the distance between the circuit board ground plane and the closest edge of the downward positioned impedance matching element can be selected based on the operating frequency of the antenna element. For example, when an antenna element 400 is configured to radiate at about 2.4 GHz, each impedance matching element may be about 8 millimeters long and positioned such that the edge closest to the circuit board is about 2-6 millimeters (e.g., about 3.6 millimeters) from a ground plane within the circuit board.
The mountable antenna element 400 of
Reflector 700 can be constructed as an object formed from a single piece of material, such as tin, similar to the construction of antenna element 400. The reflector 700 can be symmetrical except for the pins 715 and the plate 720. Hence, the material for reflector 700 can be built as a flat and approximately “T” shaped unit with a center portion with arms extending out to either side of the center portion. The flat element can then be bent, for example, down the center of the base such that each arm is of approximately equal size and extends from the other arm at a ninety-degree angle.
The antenna element legs can be used to couple the antenna element to circuit board 300 (
Extending downward from near the center of the top surface are impedance matching elements 925 and 930. A third impedance matching element is positioned opposite to impedance matching element 930 but not visible in the view of
Impedance matching elements 925-930 extend downward from the top surface toward a ground plane within circuit board 300 and form a capacitance between the impedance matching element and the ground plane. The impedance matching elements achieve impedance matching at a desired frequency based on the length of the impedance matching element and the distance between the circuit board 300 ground plane and the closest edge of the downward positioned impedance matching element based. For example, when an antenna element 900 is configured to radiate at about 5.0 GHz, each impedance matching element may be about 5 millimeters long and positioned such that the edge closest to the circuit board is between 2-6 millimeters (e.g., about 2.8 millimeters) from a ground plane within the circuit board.
The dimensions of the mountable antenna element 900 can be smaller than those for mountable antenna element 400. When the mountable antenna element 900 is constructed to operate at about 5.0 GHz, the width and length of the mountable antenna element top surface can be about 0.700 inches long. The width of the gap between top surface portions 905 and 920 is 0.106 inches at the inner most point and 0.290 at the outermost point. The width of the gap between top surface portions 915 and 920 is about 0.070 inches, with the gap width between a impedance matching element and a top surface portion (e.g., impedance matching element 930 and top surface portion 915) is about 0.020 inches.
Antenna element 900 can be constructed as an object from a single piece of material, for example tin material. The mountable antenna element 900 can be formed from the single piece of material by manipulating portions of the material. In particular, antenna element impedance matching elements 925, 930 and 1010 can be bent downward, for example to a position perpendicular to top surface portions 905, 910, 915 and 920, and legs 935, 940, 945, and 950 can be bent downward along the same direction as the impedance matching elements. RF feed element 1005 can also be positioned in a downward direction with respect to the antenna element top surface, and the edge of RF feed element 1005 and leg 470 can be bent to form a coupling plate to be coupled to circuit board 300.
Base 1220 includes a mounting plate 1225. Mounting plate 1225 can be used to couple reflector 1200 to circuit board 300 via solder. In addition to mounting plate 1225, pins 1215 can also be soldered to area 320. Once the pins 1230 are inserted into holes 330 and coupling plate 1225 is in contact with a mounting pad, the reflector 1200 can stand upright without additional support, making installation of the reflectors easer than typical reflectors which do not have mounting pins 1230 and a mounting plate 1225.
Reflector 1200 can be constructed as an object from a single piece of material, such as a piece of tin. The reflector 1200 can be symmetrical except for the pins 1230 and the plate 1225. Hence, the material for reflector 1200 can be built as a flat and approximately “T” shaped unit. The flat element can then be bent down the center such that each arm is of approximately equal size and extends from the other arm at a ninety-degree angle.
Though a finite number of mountable antenna elements are described herein, other variations of single piece construction mountable antenna elements are considered within the scope of the present technology. For example, an antenna element 400 generally has an outline of a generally square shape with extruding legs and stubs as illustrated in
The embodiments disclosed herein are illustrative. Various modifications or adaptations of the structures and methods described herein may become apparent to those skilled in the art. Such modifications, adaptations, and/or variations that rely upon the teachings of the present disclosure and through which these teachings have advanced the art are considered to be within the spirit and scope of the present invention. Hence, the descriptions and drawings herein should be limited by reference to the specific limitations set forth in the claims appended hereto.
The present application is a continuation of U.S. patent application Ser. No. 14/252,857, filed Apr. 15, 2014, which is a divisional of and claims the priority benefit to U.S. patent application Ser. No. 12/545,758, filed Aug. 21, 2009, now U.S. Pat. No. 8,698,675, issued Apr. 15, 2014 which claims the priority benefit of U.S. Provisional Application No. 61/177,546 filed May 12, 2009, the disclosures of each of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
723188 | Tesla | Mar 1903 | A |
725605 | Tesla | Apr 1903 | A |
1869659 | Broertjes | Aug 1932 | A |
2292387 | Markey et al. | Aug 1942 | A |
3488445 | Chang | Jan 1970 | A |
3568105 | Felsenheld et al. | Mar 1971 | A |
3577196 | Pereda | May 1971 | A |
3846799 | Gueguen | Nov 1974 | A |
3918059 | Adrian | Nov 1975 | A |
3922685 | Opas | Nov 1975 | A |
3967067 | Potter | Jun 1976 | A |
3982214 | Burns | Sep 1976 | A |
3991273 | Mathes | Nov 1976 | A |
4001734 | Burns | Jan 1977 | A |
4145693 | Fenwick | Mar 1979 | A |
4176356 | Foster et al. | Nov 1979 | A |
4193077 | Greenberg et al. | Mar 1980 | A |
4253193 | Kennard | Feb 1981 | A |
4305052 | Baril et al. | Dec 1981 | A |
4513412 | Cox | Apr 1985 | A |
4554554 | Olesen et al. | Nov 1985 | A |
4733203 | Ayasli | Mar 1988 | A |
4814777 | Monser | Mar 1989 | A |
4845507 | Archer et al. | Jul 1989 | A |
4975711 | Lee | Dec 1990 | A |
5063574 | Moose | Nov 1991 | A |
5097484 | Akaiwa | Mar 1992 | A |
5132698 | Swineford | Jul 1992 | A |
5173711 | Takeuchi et al. | Dec 1992 | A |
5203010 | Felix | Apr 1993 | A |
5208564 | Burns et al. | May 1993 | A |
5220340 | Shafai | Jun 1993 | A |
5282222 | Fattouche et al. | Jan 1994 | A |
5291289 | Hulyalkar et al. | Mar 1994 | A |
5311550 | Fouche et al. | May 1994 | A |
5373548 | McCarthy | Dec 1994 | A |
5507035 | Bantz | Apr 1996 | A |
5532708 | Krenz et al. | Jul 1996 | A |
5559800 | Mousseau et al. | Sep 1996 | A |
5585810 | Tsuru | Dec 1996 | A |
5610617 | Gans et al. | Mar 1997 | A |
5629713 | Mailandt et al. | May 1997 | A |
5754145 | Evans | May 1998 | A |
5767755 | Kim et al. | Jun 1998 | A |
5767809 | Chuang et al. | Jun 1998 | A |
5786793 | Maeda et al. | Jul 1998 | A |
5803312 | Lazaridis et al. | Sep 1998 | A |
5964830 | Durrett | Oct 1999 | A |
5990838 | Burns et al. | Nov 1999 | A |
6006075 | Smith et al. | Dec 1999 | A |
6011450 | Miya | Jan 2000 | A |
6018644 | Minarik | Jan 2000 | A |
6031503 | Preiss, II et al. | Feb 2000 | A |
6034638 | Thiel et al. | Mar 2000 | A |
6052093 | Yao et al. | Apr 2000 | A |
6091364 | Murakami et al. | Jul 2000 | A |
6094177 | Yamamoto | Jul 2000 | A |
6097347 | Duan et al. | Aug 2000 | A |
6101397 | Grob et al. | Aug 2000 | A |
6104356 | Hikuma et al. | Aug 2000 | A |
6166694 | Ying | Dec 2000 | A |
6169523 | Ploussios | Jan 2001 | B1 |
6204825 | Wilz | Mar 2001 | B1 |
6252559 | Donn | Jun 2001 | B1 |
6266528 | Farzaneh | Jul 2001 | B1 |
6292153 | Aiello et al. | Sep 2001 | B1 |
6307524 | Britain | Oct 2001 | B1 |
6317599 | Rappaport et al. | Nov 2001 | B1 |
6323810 | Poilasne et al. | Nov 2001 | B1 |
6326922 | Hegendoerfer et al. | Dec 2001 | B1 |
6337628 | Campana et al. | Jan 2002 | B2 |
6337668 | Ito et al. | Jan 2002 | B1 |
6339404 | Johnson et al. | Jan 2002 | B1 |
6345043 | Hsu | Feb 2002 | B1 |
6356242 | Ploussios | Mar 2002 | B1 |
6356243 | Schneider et al. | Mar 2002 | B1 |
6356905 | Gershman et al. | Mar 2002 | B1 |
6377227 | Zhu et al. | Apr 2002 | B1 |
6392610 | Braun et al. | May 2002 | B1 |
6404386 | Proctor, Jr. et al. | Jun 2002 | B1 |
6407719 | Ohira et al. | Jun 2002 | B1 |
RE37802 | Fattouche et al. | Jul 2002 | E |
6414647 | Lee | Jul 2002 | B1 |
6424311 | Tsai et al. | Jul 2002 | B1 |
6442507 | Skimore et al. | Aug 2002 | B1 |
6445688 | Garces et al. | Sep 2002 | B1 |
6452556 | Ha et al. | Sep 2002 | B1 |
6452981 | Raleigh | Sep 2002 | B1 |
6456242 | Crawford | Sep 2002 | B1 |
6493679 | Rappapport et al. | Dec 2002 | B1 |
6496083 | Kushitani et al. | Dec 2002 | B1 |
6498589 | Horii | Dec 2002 | B1 |
6499006 | Rappaport et al. | Dec 2002 | B1 |
6507321 | Oberschmidt et al. | Jan 2003 | B2 |
6531985 | Jones et al. | Mar 2003 | B1 |
6583765 | Schamberger et al. | Jun 2003 | B1 |
6586786 | Kitazawa et al. | Jul 2003 | B2 |
6606059 | Barabash | Aug 2003 | B1 |
6611230 | Phelan | Aug 2003 | B2 |
6621464 | Fang | Sep 2003 | B1 |
6625454 | Rappaport et al. | Sep 2003 | B1 |
6633206 | Kato | Oct 2003 | B1 |
6642889 | McGrath | Nov 2003 | B1 |
6674459 | Ben-Shachar et al. | Jan 2004 | B2 |
6701522 | Rubin et al. | Mar 2004 | B1 |
6720925 | Wong et al. | Apr 2004 | B2 |
6724346 | Le Bolzer | Apr 2004 | B2 |
6725281 | Zintel et al. | Apr 2004 | B1 |
6741219 | Shor | May 2004 | B2 |
6747605 | Lebaric | Jun 2004 | B2 |
6753814 | Killen et al. | Jun 2004 | B2 |
6753826 | Chiang et al. | Jun 2004 | B2 |
6762723 | Nallo et al. | Jul 2004 | B2 |
6774846 | Fullerton et al. | Aug 2004 | B2 |
6779004 | Zintel | Aug 2004 | B1 |
6786769 | Lai | Sep 2004 | B2 |
6801790 | Rudrapatna | Oct 2004 | B2 |
6819287 | Sullivan et al. | Nov 2004 | B2 |
6839038 | Weinstein | Jan 2005 | B2 |
6859176 | Choi | Feb 2005 | B2 |
6859182 | Horii | Feb 2005 | B2 |
6876280 | Nakano | Apr 2005 | B2 |
6876836 | Lin et al. | Apr 2005 | B2 |
6888504 | Chiang et al. | May 2005 | B2 |
6888893 | Li et al. | May 2005 | B2 |
6892230 | Gu et al. | May 2005 | B1 |
6903686 | Vance et al. | Jun 2005 | B2 |
6906678 | Chen | Jun 2005 | B2 |
6910068 | Zintel et al. | Jun 2005 | B2 |
6914581 | Popek | Jul 2005 | B1 |
6924768 | Wu et al. | Aug 2005 | B2 |
6931429 | Gouge et al. | Aug 2005 | B2 |
6937206 | Puente Ballarda et al. | Aug 2005 | B2 |
6941143 | Mathur | Sep 2005 | B2 |
6943749 | Paun | Sep 2005 | B2 |
6946996 | Koyama | Sep 2005 | B2 |
6950019 | Bellone et al. | Sep 2005 | B2 |
6950069 | Gaucher et al. | Sep 2005 | B2 |
6961028 | Joy et al. | Oct 2005 | B2 |
6961026 | Toda et al. | Nov 2005 | B2 |
6965353 | Shirosaka et al. | Nov 2005 | B2 |
6973622 | Rappaport et al. | Dec 2005 | B1 |
6975834 | Forster | Dec 2005 | B1 |
6980782 | Braun et al. | Dec 2005 | B1 |
7023909 | Adams et al. | Apr 2006 | B1 |
7034769 | Surducan et al. | Apr 2006 | B2 |
7034770 | Yang et al. | Apr 2006 | B2 |
7039363 | Kasapi et al. | May 2006 | B1 |
7043277 | Pfister | May 2006 | B1 |
7050809 | Lim | May 2006 | B2 |
7053844 | Gaucher et al. | May 2006 | B2 |
7053845 | Holloway et al. | May 2006 | B1 |
7064717 | Kaluzni et al. | Jun 2006 | B2 |
7068234 | Sievenpiper | Jun 2006 | B2 |
7075485 | Song et al. | Jul 2006 | B2 |
7084816 | Watanabe | Aug 2006 | B2 |
7084823 | Caimi et al. | Aug 2006 | B2 |
7085814 | Ghandhi et al. | Aug 2006 | B1 |
7088299 | Siegler et al. | Aug 2006 | B2 |
7089307 | Zintel et al. | Aug 2006 | B2 |
7130895 | Zintel et al. | Oct 2006 | B2 |
7171475 | Weisman et al. | Jan 2007 | B2 |
7193562 | Shtrom et al. | Mar 2007 | B2 |
7196674 | Timofeev et al. | Mar 2007 | B2 |
7277063 | Shirosaka et al. | Oct 2007 | B2 |
7308047 | Sadowsky | Dec 2007 | B2 |
7312762 | Puente Ballarda et al. | Dec 2007 | B2 |
7319432 | Andersson | Jan 2008 | B2 |
7327328 | Yoneya et al. | Feb 2008 | B2 |
7362280 | Shtrom et al. | Apr 2008 | B2 |
7388552 | Mori | Jun 2008 | B2 |
7424298 | Lastinger et al. | Sep 2008 | B2 |
7493143 | Jalali | Feb 2009 | B2 |
7498996 | Shtrom et al. | Mar 2009 | B2 |
7525486 | Shtrom et al. | Apr 2009 | B2 |
7603141 | Dravida | Oct 2009 | B2 |
7609223 | Manasson et al. | Oct 2009 | B2 |
7646343 | Shtrom et al. | Jan 2010 | B2 |
7652632 | Shtrom et al. | Jan 2010 | B2 |
7675474 | Shtrom et al. | Mar 2010 | B2 |
7696940 | Macdonald | Apr 2010 | B1 |
7696943 | Chiang et al. | Apr 2010 | B2 |
7696948 | Abramov et al. | Apr 2010 | B2 |
7868842 | Chair | Jan 2011 | B2 |
7880683 | Shtrom et al. | Feb 2011 | B2 |
7899497 | Kish et al. | Mar 2011 | B2 |
7965252 | Shtrom et al. | Jun 2011 | B2 |
8031129 | Shtrom et al. | Oct 2011 | B2 |
8199063 | Moon et al. | Jun 2012 | B2 |
8314749 | Shtrom et al. | Nov 2012 | B2 |
8698675 | Shtrom et al. | Apr 2014 | B2 |
8860629 | Shtrom et al. | Oct 2014 | B2 |
20010046848 | Kenkel | Nov 2001 | A1 |
20020031130 | Tsuchiya et al. | Mar 2002 | A1 |
20020047800 | Proctor, Jr. et al. | Apr 2002 | A1 |
20020054580 | Stich et al. | May 2002 | A1 |
20020080767 | Lee | Jun 2002 | A1 |
20020084942 | Tsai et al. | Jul 2002 | A1 |
20020101377 | Crawford | Aug 2002 | A1 |
20020105471 | Kojima et al. | Aug 2002 | A1 |
20020112058 | Weisman et al. | Aug 2002 | A1 |
20020140607 | Zhou | Oct 2002 | A1 |
20020158798 | Chiang et al. | Oct 2002 | A1 |
20020170064 | Monroe et al. | Nov 2002 | A1 |
20030026240 | Eyuboglu et al. | Feb 2003 | A1 |
20030030588 | Kalis et al. | Feb 2003 | A1 |
20030063591 | Leung et al. | Apr 2003 | A1 |
20030122714 | Wannagot et al. | Jul 2003 | A1 |
20030169330 | Ban-Shachar et al. | Sep 2003 | A1 |
20030184490 | Raiman et al. | Oct 2003 | A1 |
20030189514 | Miyano et al. | Oct 2003 | A1 |
20030189521 | Yamamoto et al. | Oct 2003 | A1 |
20030189523 | Ojantakanen et al. | Oct 2003 | A1 |
20030210207 | Suh et al. | Nov 2003 | A1 |
20030227414 | Saliga et al. | Dec 2003 | A1 |
20040014432 | Boyle | Jan 2004 | A1 |
20040017310 | Runkle et al. | Jan 2004 | A1 |
20040017315 | Fang et al. | Jan 2004 | A1 |
20040017860 | Liu | Jan 2004 | A1 |
20040027291 | Zhang et al. | Feb 2004 | A1 |
20040027304 | Chiang et al. | Feb 2004 | A1 |
20040032378 | Volman et al. | Feb 2004 | A1 |
20040036651 | Toda | Feb 2004 | A1 |
20040036654 | Hsieh | Feb 2004 | A1 |
20040041732 | Aikawa et al. | Mar 2004 | A1 |
20040048593 | Sano | Mar 2004 | A1 |
20040058690 | Ratzel et al. | Mar 2004 | A1 |
20040061653 | Webb et al. | Apr 2004 | A1 |
20040070543 | Masaki | Apr 2004 | A1 |
20040075609 | Li | Apr 2004 | A1 |
20040080455 | Lee | Apr 2004 | A1 |
20040095278 | Kanemoto et al. | May 2004 | A1 |
20040114535 | Hoffman et al. | Jun 2004 | A1 |
20040125777 | Doyle et al. | Jul 2004 | A1 |
20040145528 | Mukai et al. | Jul 2004 | A1 |
20040160376 | Hornsby et al. | Aug 2004 | A1 |
20040183727 | Choi | Sep 2004 | A1 |
20040190477 | Olson et al. | Sep 2004 | A1 |
20040203347 | Nguyen | Oct 2004 | A1 |
20040239571 | Papziner et al. | Dec 2004 | A1 |
20040260800 | Gu et al. | Dec 2004 | A1 |
20050001777 | Suganthan et al. | Jan 2005 | A1 |
20050022210 | Zintel et al. | Jan 2005 | A1 |
20050041739 | Li et al. | Feb 2005 | A1 |
20050042988 | Hoek et al. | Feb 2005 | A1 |
20050048934 | Rawnick et al. | Mar 2005 | A1 |
20050074018 | Zintel et al. | Apr 2005 | A1 |
20050074108 | Dezonno et al. | Apr 2005 | A1 |
20050097503 | Zintel et al. | May 2005 | A1 |
20050105632 | Catreux-Erces et al. | May 2005 | A1 |
20050128983 | Kim et al. | Jun 2005 | A1 |
20050135480 | Li et al. | Jun 2005 | A1 |
20050138137 | Encarnacion et al. | Jun 2005 | A1 |
20050138193 | Encarnacion et al. | Jun 2005 | A1 |
20050146475 | Bettner et al. | Jul 2005 | A1 |
20050180381 | Retzer et al. | Aug 2005 | A1 |
20050188193 | Kuehnel et al. | Aug 2005 | A1 |
20050200529 | Watanabe | Sep 2005 | A1 |
20050219128 | Tan et al. | Oct 2005 | A1 |
20050240665 | Gu et al. | Oct 2005 | A1 |
20050266902 | Khatri | Dec 2005 | A1 |
20050267935 | Ghandhi et al. | Dec 2005 | A1 |
20060007891 | Aoki et al. | Jan 2006 | A1 |
20060027622 | Sun | Feb 2006 | A1 |
20060038734 | Shtrom et al. | Feb 2006 | A1 |
20060050005 | Shirosaka et al. | Mar 2006 | A1 |
20060078066 | Yun | Apr 2006 | A1 |
20060094371 | Nguyen | May 2006 | A1 |
20060098607 | Zeng et al. | May 2006 | A1 |
20060109191 | Shtrom et al. | May 2006 | A1 |
20060123124 | Weisman et al. | Jun 2006 | A1 |
20060123125 | Weisman et al. | Jun 2006 | A1 |
20060123455 | Pai et al. | Jun 2006 | A1 |
20060160495 | Strong | Jul 2006 | A1 |
20060168159 | Weisman et al. | Jul 2006 | A1 |
20060184660 | Rao et al. | Aug 2006 | A1 |
20060184661 | Weisman et al. | Aug 2006 | A1 |
20060184693 | Rao et al. | Aug 2006 | A1 |
20060187660 | Liu | Aug 2006 | A1 |
20060224690 | Falkenburg et al. | Oct 2006 | A1 |
20060225107 | Seetharaman et al. | Oct 2006 | A1 |
20060227761 | Scott, III et al. | Oct 2006 | A1 |
20060239369 | Lee | Oct 2006 | A1 |
20060262015 | Thornell-Pers et al. | Nov 2006 | A1 |
20060291434 | Gu et al. | Dec 2006 | A1 |
20070135167 | Liu | Jun 2007 | A1 |
20070162819 | Kawamoto | Jul 2007 | A1 |
20080266189 | Wu et al. | Oct 2008 | A1 |
20080284657 | Rudant | Nov 2008 | A1 |
20090075606 | Shtrom et al. | Mar 2009 | A1 |
20100289705 | Shtrom et al. | Nov 2010 | A1 |
20110205137 | Shtrom et al. | Aug 2011 | A1 |
20120007790 | Shtrom et al. | Jan 2012 | A1 |
20120068892 | Shtrom et al. | Mar 2012 | A1 |
20130181882 | Shtrom et al. | Jul 2013 | A1 |
20140071013 | Shtrom et al. | Mar 2014 | A1 |
20140285391 | Baron | Sep 2014 | A1 |
Number | Date | Country |
---|---|---|
352 787 | Jan 1990 | EP |
1608 108 | Dec 2005 | EP |
2 479 837 | Jul 2012 | EP |
2 619 848 | Jul 2013 | EP |
2 893 593 | Jul 2015 | EP |
1180836 | Oct 2013 | HK |
2003-038933 | Feb 1991 | JP |
2008-088633 | Feb 1996 | JP |
2011-215040 | Aug 1999 | JP |
2001-057560 | Feb 2002 | JP |
2005-354249 | Dec 2005 | JP |
2006-060408 | Mar 2006 | JP |
I372487 | Sep 2012 | TW |
I451624 | Sep 2014 | TW |
WO 90004893 | May 1990 | WO |
WO 02025967 | Mar 2002 | WO |
WO 03079484 | Sep 2003 | WO |
WO 2006023247 | Mar 2006 | WO |
WO 2007127087 | Nov 2007 | WO |
WO 2007127088 | Nov 2007 | WO |
WO 2012040397 | Mar 2012 | WO |
WO 2014039949 | Mar 2014 | WO |
WO 2014146038 | Sep 2014 | WO |
Entry |
---|
Chinese Patent Application No. 201180050872.3, Second Office Action dated Jan. 30, 2015. |
U.S. Appl. No. 12/887,448, Final Office Action dated Feb. 10, 2015. |
European Application No. 11827 493.5 Extended European Search Report dated Nov. 6, 2014. |
Chinese Patent Application No. 201210330398.6, Second Office Action dated Sep. 24, 2014. |
U.S. Appl. No. 13/607,612, Office Action dated Nov. 7, 2014. |
“Authorization of spread spectrum and other wideband emissions not presently provided for in the FCC Rules and Regulations,” Before the Federal Communications Commission, FCC 81-289, 87 F.C.C.2d 876, Jun. 30, 1981. |
“Authorization of Spread Spectrum Systems Under Parts 15 and 90 of the FCC Rules and Regulations,” Rules and Regulations Federal Communications Commission, 47 CFR Part 2, 15, and 90, Jun. 18, 1985. |
Alard, M., et al., “Principles of Modulation and Channel Coding for Digital Broadcasting for Mobile Receivers,” 8301 EBU Review Technical, Aug. 1987, No. 224, Brussels, Belgium. |
Ando et al., “Study of Dual-Polarized Omni-Directional Antennas for 5.2 GHz-Band 2x2 MIMO-OFDM Systems,” Antennas and Propogation Society International Symposium, 2004 IEEE, pp. 1740-1743, vol. 2. |
Areg Alimian et al, “Analysis of Roaming Techniques,” doc.:IEEE 802.11-04/0377r1, Submission, Mar. 2004. |
Bedell, Paul “Wireless Crash Course,” 2005, p. 84, The McGraw-Hill Companies, Inc., USA. |
Behdad et al., Slot Antenna Miniaturization Using Distributed Inductive Loading, Antenna and Propagation Society International Symposium, 2003 IEEE, vol. 1, pp. 308-311 (Jun. 2003). |
Berenguer, Inaki, et al., “Adaptive MIMO Antenna Selection,” Nov. 2003. |
Casas, Eduardo F., et al., “OFDM for Data Communication Over Mobile Radio FM Channels-Part I: Analysis and Experimental Results,” IEEE Transactions on Communications, vol. 39, No. 5, May 1991, pp. 783-793. |
Casas, Eduardo F., et al., “OFDM for Data Communication Over Mobile Radio FM Channels-Part II: Performance Improvement,” Department of Electrical Engineering, University of British Colombia, 1992. |
Chang, Nicholas B. et al., “Optimal Channel Probing and Transmission Scheduling for Opportunistics Spectrum Access,” Sep. 2007. |
Chang, Robert W., “Synthesis of Band-Limited Orthogonal Signals for Mutichannel Data Transmission,” The Bell System Technical Journal, Dec. 1966, pp. 1775-1796. |
Chang, Robert W., et al, “A Theoretical Study of Performance of an Orthogonal Multiplexing Data Transmission Scheme,” IEEE Transactions on Communication Technology, vol. Com-16, No. 4, Aug. 1968, pp. 529-540. |
Chuang et al., A 2.4 GHz Polarization-diversity Planar Printed Dipole Antenna for WLAN and Wireless Communication Applications, Microwave Journal, vol. 45, No. 6, pp. 50-62 (Jun. 2002). |
Cimini, Jr., Leonard J, “Analysis and Simulation of a Digital Mobile Channel Using Orthogonal Frequency Division Multiplexing,” IEEE Transactions on Communications, vol. Com-33, No. 7, Jul. 1985, pp. 665-675. |
Cisco Systems, “Cisco Aironet Access Point Software Configuration Guide: Configuring Filters and Quality of Service,” Aug. 2003. |
Dell Inc., “How Much Broadcast and Multicast Traffic Should I Allow in My Network,” PowerConnect Application Note #5, Nov. 2003. |
Dunkels, Adam et al., “Connecting Wireless Sensornets with TCP/IP Networks,” Proc. of the 2d Int'l Conf. on Wired Networks, Frankfurt, Feb. 2004. |
Dunkels, Adam et al., “Making TCP/IP Viable for Wireless Sensor Networks,” Proc. of the 1st Euro. Workshop on Wireless Sensor Networks, Berlin, Jan. 2004. |
Dutta, Ashutosh et al., “MarconiNet Supporting Streaming Media Over Localized Wireless Multicast,” Proc. of the 2d Int'l Workshop on Mobile Commerce, 2002. |
English Translation of PCT Pub. No. WO 2004/051798 (as filed U.S. Appl. No. 10/536,547). |
Festag, Andreas, “What is MOMBASA?” Telecommunication Networks Group (TKN), Technical University of Berlin, Mar. 7, 2002. |
Frederick et al., Smart Antennas Based on Spatial Multiplexing of Local Elements (SMILE) for Mutual Coupling Reduction, IEEE Transactions of Antennas and Propogation, vol. 52., No. 1, pp. 106-114 (Jan. 2004). |
Gaur, Sudhanshu, et al., “Transmit/Receive Antenna Selection for MIMO Systems to Improve Error Performance of Linear Receivers,” School of EGE, Georgia Institute of Technology, Apr. 4, 2005. |
Gledhill, J. J., et al., “The Transmission of Digital Television in the UHF Band Using Orthogonal Frequency Division Multiplexing,” Sixth International Conference on Digital Processing of Signals in Communications, Sep. 2-6, 1991, pp. 175-180. |
Golmie, Nada, “Coexistence in Wireless Networks: Challenges and System-Level Solutions in the Unlicensed Bands,” Cambridge University Press, 2006. |
Hewlett Packard, “HP ProCurve Networking: Enterprise Wireless LAN Networking and Mobility Solutions,” 2003. |
Hirayama, Koji et al., “Next-Generation Mobile-Access IP Network,” Hitachi Review vol. 49, No. 4, 2000. |
Ian R. Akyildiz, et al., “A Virtual Topology Based Routing Protocol for Multihop Dynamic Wireless Networks,” Broadband and Wireless Networking Lab, School of Electrical and Computer Engineering, Georgia Institute of Technology, 2001. |
Information Society Technologies Ultrawaves, “System Concept/Architecture Design and Communication Stack Requirement Document,” Feb. 23, 2004. |
Ken Tang, et al., “MAC Layer Broadcast Support in 802.11 Wireless Networks,” Computer Science Department, University of California, Los Angeles, 2000 IEEE, pp. 544-548. |
Ken Tang, et al., “MAC Reliable Broadcast in Ad Hoc Networks,” Computer Science Department, University of California, Los Angeles, 2001 IEEE, pp. 1008-1013. |
Mawa, Rakesh. “Power Control in 3G Systems,” Hughes Systique Corporation, Jun. 28, 2006. |
Microsoft Corporation, “IEEE 802.11 Networks and Windows XP,” Windows Hardware Developer Central, Dec. 4, 2001. |
Molisch, Andreas F., et al., “MIMO Systems with Antenna Selection-an Overview,” Draft, Dec. 31, 2003. |
Moose, Paul H., “Differential Modulation and Demodulation of Multi-Frequency Digital Communications Signals,” 1990 IEEE, CH2831-6/90/0000-0273. |
Pat Calhoun et al., “802.11r strengthens wireless voice,” Technology Update, Network World, Aug. 22, 2005, http://www. networkworld .com/news/tech/2005/082208techupdate.html. |
Press Release, NETGEAR RangeMax(TM) Wireless Networking Solutions Incorporate Smart MIMO Technology to Eliminate Wireless Dead Spots and Take Consumers Farther, Ruckus Wireless Inc. (Mar. 7, 2005), available at http://ruckuswireless.com/press/releases/20050307.php. |
RL Miller, “4.3 Project X—A True Secrecy System for Speech,” Engineering and Science in the Bell System, A History of Engineering and Science in the Bell System National Service in War and Peace (1925-1975), pp. 296-317, 1978, Bell Telephone Laboratories, Inc. |
Sadek, Mirette, et al, “Active Antenna Selection in Multiuser MIMO Communications,” IEEE Transactions on Signal Processing, vol. 55, No. 4, Apr. 2007, pp. 1498-1510. |
Saltzberg, Burton R., “Performance of an Efficient Parallel Data Transmission System,” IEEE Transactions on Communication Technology, vol. Com-15, No. 6, Dec. 1967, pp. 805-811. |
Siemens, Carrier Lifetime and Forward Resistance in RF PIN Diodes. 1997. [retrieved on Dec. 1, 2013]. Retrieved from the Internet: <URL:http ://palgong.kyungpook.ac. kr/˜ysyoon/Pdf/appli034.pdf>. |
Steger, Christopher et al., “Performance of IEEE 802.11 b Wireless LAN in an Emulated Mobile Channel,” 2003. |
Toskala, Antti, “Enhancement of Broadcast and Introduction of Multicast Capabilities in RAN,” Nokia Networks, Palm Springs, California, Mar. 13-16, 2001. |
Tsunekawa, Kouichi “Diversity Antennas for Portable Telephones,” 39th IEEE Vehicular Technology, May 1-3, 1989, San Francisco, CA. |
Varnes et al., A Switched Radial Divider for an L-Band Mobile Satellite Antenna, European Microwave Conference (Oct. 1995), pp. 1037-1041. |
Vincent D. Park, et al., “A Performance Comparison of the Temporally-Ordered Routing Algorithm and Ideal Link-State Routing,” IEEE, Jul. 1998, pp. 592-598. |
W.E. Doherty, Jr. et al., The Pin Diode Circuit Designer's Handbook 1998. |
Weinstein, S. B., et al., “Data Transmission by Frequency-Division Multiplexing Using the Discrete Fourier Transform,” IEEE Transactions on Communication Technology, vol. Com-19, No. 5, Oct. 1971, pp. 628-634. |
Wennstrom, Mattias et al., “Transmit Antenna Diversity in Ricean Fading MIMO Channels with Co-Channel Interference,” 2001. |
Petition Decision Denying Request to Order Additional Claims for U.S. Pat. No. 7,193,562 (Control No. 95/001078) dated Jul. 10, 2009. |
Right of Appeal Notice for U.S. Pat. No. 7, 193,562 (Control No. 95/001078) dated Jul. 10, 2009. |
Supplementary European Search Report for EP Application No. 07755519 dated Mar. 11, 2009. |
European Application No. 7775498.4 Examination Report dated Mar. 12, 2013. |
European Application No. 7775498.4 Examination Report dated Oct. 17, 2011. |
Chinese Patent Application No. 200780023325.X, Second Office Action dated Oct. 19, 2012. |
Chinese Patent Application No. 200780023325.X, First Office Action dated Feb. 13, 2012. |
Chinese Patent Application No. 200780020943.9, Second Office Action dated Aug. 29, 2012. |
Chinese Patent Application No. 201180050872.3, First Office Action dated May 30, 2014. |
Chinese Patent Application No. 201210330398.6, First Office Action dated Feb. 20, 2014. |
Taiwan Patent Application No. 096114271, Office Action dated Dec. 18, 2013. |
Taiwan Patent Application No. 096114265, Office Action dated Jun. 20, 2011. |
PCT/US07/09278, PCT International Search Report and Written Opinion dated Aug. 18, 2008. |
PCT/US11/052661, PCT international Search Report and Written Opinion dated Jan. 17, 2012. |
PCT/US07/009276, PCT International Search Report and Written Opinion dated Aug. 11, 2008. |
PCT/US13/058713, PCT international Search Report and Written Opinion dated Dec. 13, 2013. |
PCT/US14/030911, PCT International Search Report and Written Opinion dated Aug. 22, 2014. |
U.S. Appl. No. 11/413,670, Final Office Action dated Jul. 13, 2009. |
U.S. Appl. No. 11/413,670, Office Action dated Jan. 6, 2009. |
U.S. Appl. No. 11/413,670, Final Office Action dated Aug. 11, 2008. |
U.S. Appl. No. 11/413,670, Office Action dated Feb. 4, 2008. |
U.S. Appl. No. 11/414,117, Final Office Action dated Jul. 6, 2009. |
U.S. Appl. No. 11/414,117, Office Action dated Sep. 25, 2008. |
U.S. Appl. No. 11/414,117, Office Action dated Mar. 21, 2008. |
U.S. Appl. No. 12/605,256, Office Action dated Dec. 28, 2010. |
U.S. Appl. No. 13/240,687, Office Action dated Feb. 22, 2012. |
U.S. Appl. No. 13/681,421, Office Action dated Dec. 3, 2013. |
U.S. Appl. No. 12/545,758, Final Office Action dated Sep. 10, 2013. |
U.S. Appl. No. 12/545,758, Office Action dated Jan. 2, 2013. |
U.S. Appl. No. 12/545,758, Final Office Action dated Oct. 3, 2012. |
U.S. Appl. No. 12/545,758, Office Action dated Oct. 3, 2012. |
U.S. Appl. No. 12/887,448, Office Action dated Apr. 28, 2014. |
U.S. Appl. No. 12/887,448, Final Office Action dated Jan. 14, 2014. |
U.S. Appl. No. 12/887,448, Office Action dated Sep. 26, 2013. |
U.S. Appl. No. 12/887,448, Final Office Action dated Jul. 2, 2013. |
U.S. Appl. No. 12/887,448, Office Action dated Jan. 7, 2013. |
Chinese Patent Application No. 201210330398.6, Third Office Action dated Jun. 2, 2015. |
Chinese Patent Application No. 201180050872.3, Third Office Action dated Aug. 4, 2015. |
Chinese Patent Application No. 201210330398.6, Fourth Office Action dated Sep. 17, 2015. |
U.S. Appl. No. 13/607,612, Office Action dated Sep. 3, 2015. |
U.S. Appl. No. 14/217,392, Office Action dated Sep. 16, 2015. |
U.S. Appl. No. 13/607,612, Final Office Action dated Mar. 19, 2015. |
Number | Date | Country | |
---|---|---|---|
20160352006 A1 | Dec 2016 | US |
Number | Date | Country | |
---|---|---|---|
61177546 | May 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12545758 | Aug 2009 | US |
Child | 14252857 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14252857 | Apr 2014 | US |
Child | 15237547 | US |