Embodiments disclosed herein pertain to lighting devices, lighting kits and method of lighting a workspace.
Providing sufficient lighting for working on or around vehicles and other types of equipment can be a challenge due to small workspaces or areas that are difficult to provide light to because of limited room to place lighting equipment.
Working under the hood of a vehicle, under the vehicle or within tight spaces around and engine or drive train typically utilizes hanging lights, such as treble lights, or stand-mounted lights. Such work can be difficult due to inability of conventional lighting to illuminate precise areas. Further, lighting cords can be problematic in that they can interfere with the work area and/or surrounding areas when strung to connect to an AC power source or any power source that is remote from the vehicle being worked on.
Vehicles that pull trailers can be difficult to hitch in dark areas due to insufficient lighting provided by taillights, the difficulty in utilizing flashlights for such purpose and/or unavailability of appropriately positionable lighting systems.
Another lighting difficulty can occur in utilizing sports/action cameras. Since the subject is in motion, it may not be possible to provide sufficient light for photos or videos utilizing conventional lighting methods.
It would be desirable to provide alternative lighting devices and methods of lighting that address these and other problems.
The invention includes lighting devices that are capable of illuminating small, tight or hard to illuminate areas. Such areas can include workspaces such as engine areas, power train areas, frame areas, underside areas, under dash areas, or other areas of vehicles (e.g. cars, trucks, trains, buses, motorcycles, boats, all-terrain vehicles, planes, etc.). Workspace areas can also include, for example, areas under trailers, areas around vehicle tires or around trailer hitches that can be difficult to illuminate due to non-lighted areas, remote areas in the night, etc. where sunlight or conventional lighting is unavailable or insufficient (such as for hitching a trailer or changing a tire).
Lighting devices of the invention can also be utilized to provide lighting for filming or photographing sports activities or other activities utilizing, for example, a personal wearable or mountable activity camera. For example, lighting devices of the invention can be mounted on a vehicle upon which an action camera is mounted, on a vehicle upon which a wearer of a camera is traveling, or on a vehicle or other object near the activity being filmed or photographed. For instance, lighting devices in accordance with the invention can be mounted on a surface of a boat to provide lighting behind the boat (or another boat) to photograph a water skier.
Devices of the invention are intended for reversible mounting or fixed mounting onto a surface for utilization with a direct current power source. The applications and specific mounting aspects described herein are intended to be examples and are not intended to be limiting. Other non-described surfaces, rails and structures can serve for mounting of the devices of the invention. Similarly, the lighting devices can be utilized in numerous additional applications that are not specifically described but are encompassed by the invention.
Example lighting devices and components encompassed by the invention are described generally with reference to
Light housing 16 can have a front portion 18 with a front face 19 with one or more light covers 20. The size of the housing is not limited and can house one or more lights 22 configured to provide illumination through light covers 20. The number of lights 22 housed within the housing can be one or can be a plurality. Lights 22 can be spotlights or can be floodlights. Preferred embodiments of the invention can utilize light emitting diode (LED) lights configured for direct current (DC) power.
Front face 19 can have a rectangular shape as shown, or can comprise an alternative shape including but not limited to round, square, polygonal, oval, etc. Further, front face 19 can comprises a single light cover or multiple light covers. Each light cover can cover a single light or can cover multiple lights. Example shapes of light cover(s) 20 can be round as shown, or can have any alternative shape including but not limited to square, rectangular, polygonal, oval, etc.
Light unit 12 can, in some embodiments, comprise an extending connection portion 24 that can be disposed on a bottom of the housing as shown, or can extend along a side, top or back of the housing. Although connector 24 is shown as an extension, connector 24 can alternatively be within or integral with main body housing 16.
A power cord 26 for delivery of direct current to lights 22 can be provided into housing 16. The sight on housing 16 for entry of cord 26 is not limited and can be on a front, back, top, bottom or side of the housing. Power cord 26 can, in particular applications, have a length of up to about 3 feet, although longer cord lengths are contemplated. A power connector 28 can be disposed at a distal end of power cord 26. In some instance, connector 28 can preferably be a two-pin harness connector (shown) although numerous alternative connector types are contemplated. A two-pin harness connection can be preferred for allowing direct connection into a trailer light harness connector (e.g. 4-pin connector). Additionally, a mating two-pin connector can be provided to connect to connector 28 and link the lighting device to a power supply utilizing an appropriate adaptor (discussed below). Thus, the two-pin harness connector can provide versatility to allow multiple types of power connections to be utilized.
Lighting device 10 can further comprise a mounting structure 14. Mounting structure 14 can comprise a mounting base 30, an extension arm 32 and an attachment portion 34 that can, in particular embodiments, be a bracket. Attachment portion 34, extension arm 32 and mounting base 30 can be provided as separate components that can be interconnected (shown), or can be provided as a unitary piece.
In the illustrated mounting structure, mounting base 30 is attached to extension arm 32 utilizing threading of the arm and a nut 40. As shown in
Referring again to
In some applications, it can be desirable to provide base portion 30 directly attached to lighting unit 12 in an absence of any extension arm 32. Accordingly, base 30 can comprise an attached bracket, ball or socket, etc., or can be directly screwed or pinned into housing 16 or extension 24 of the light unit (not shown).
Although mounting structure 14 is shown as being mounted to a single light unit, a single mounting structure 14 can be configured for mounting multiple light units. The size of mounting base 30 can vary based upon particular applications based upon factors such as size of available surfaces upon which to be mounted. Larger bases can also be provided for heavier or larger light units, or for supporting multiple light units. An example base size (diameter or length) can range, for example from about 1 inch for very small lights, to about 8 inches for heavy or large lights. Where an extension arm 32 is utilized, such arm can have a length of from about 1 inch to about 12 inches.
As additionally illustrated in
In embodiments of the invention where connector 28 of the light unit is other than a two-pin harness connector, connector 52 can be an alternative type of connector configured to engage with connector 28.
In the embodiment shown, power source connector is an alligator clip type battery tender. However, alternative power source connectors are contemplated (see below).
An alternative lighting device 10a configuration is depicted in
As shown in
Device 10a can be mounted to a surface utilizing one or more mounting bases such as those described above with respect to
The embodiment of
Referring next to
Connector 166 of
Referring to
Visible in
Magnet 70 is shown as having a circular ring configuration. However, alternative shapes and configurations can be utilized such as solid circular, square, rectangular, etc., or alternatively shaped “ring” magnets can be utilized. In some instances one or more magnetic bars or strips can be utilized.
Alternative reversible or permanent mounting bases are contemplated including but not limited to clamps, clips, bolts, etc. Although the embodiments above are described as having a single mounting base per each light unit, devices of the invention can comprise multiple mounting bases per light unit. Where two or more mounting bases are provided per light unit, the bases can be identical or can differ from one another in configuration, size, shape, and/or attachment mechanism.
Referring to
Hook portion 204 can be directly attached to base 202 or can optionally be attached to a swivel 208 disposed between base 202 and the hook portion. Devices in accordance with the invention can utilize one cord holder or multiple cord holders disposed at various locations between the light unit(s) and a power source.
Another optional feature of the light devices of the invention is shown in
The invention additionally encompasses lighting kits that include one or more of any of the lighting devices described above. The kits may include one or more light units 12 shown in
Additional optional kit components can include, for example, one or more cord holder 200, one or more splitters 100, one or more extension cords 60 and/or one or more switches 400.
Methodology of the invention can include mounting of one or more of the described lighting units to a surface or multiple surfaces proximate an area to be lighted. For lighting a work area associated with a vehicle, the surface(s) upon which the device(s) can be mounted can include but are not limited to surfaces of the vehicle body, frame, engine, etc., and/or surfaces of a lift. Where lighting is desired for hitching a trailer, the lighting units can be mounted to surface(s) of the tow vehicle and/or trailer.
Other surfaces for mounting can include surfaces near an area of an activity to be photographed. For example, one or more light units can be mounted to a surface of a boat to provide a lighted area around the boat to photograph or film an activity such as waterskiing, parasailing, etc. that occur near the boat. Accordingly, lighting systems of the invention can be used in conjunction with specialize cameras such as sports/activity cameras.
Methodology of mounting of the devices of the invention can include providing any of the mounting structures described herein as appropriate for the surface(s) onto which the devices will be mounted. Mounting can include attachment of the mounting structure to the desired surface and can additionally include adjusting an angle and/or aiming of each of the mounted light units to illuminate the area or workspace to be lighted. Mounting can further include adjustment of any mounting arm.
Methodology can further include connecting the lighting units to a DC power supply. In most instances where a vehicle area is to be lighted, the DC power supply can preferably be the battery of the vehicle, although alternative DC sources are contemplated as described above. The connecting can include providing and connecting any of the adaptors, extensions, splitters, etc. described above.
Methodology can optionally include attaching one or more cord holders (e.g.
Lighting devices, kits and lighting methodology of the invention can advantageously provide lighting into small or hard to access work areas or other areas where conventional lighting is inadequate. Vehicle garages, shops, repair facilities and other work areas such as those around machinery, typically utilize ceiling lights and/or light stands that fail to provide lighting to tight or difficult to light areas on or around a vehicle (e.g. under the vehicle, under the hood, around a wheel, etc.) or on or around machinery. The lighting systems of the invention can provide illumination of these areas.
Additionally, the devices of the invention are configured to utilize DC power which allows for, inter alia, use of the battery of a vehicle to be worked on as the power source. Accordingly, an AC power source is not required. The devices of the invention can therefore be utilized with a variety of DC powered machines, equipment, tools, etc., that are often used where AC lighting is unavailable (e.g. snow blowers, lawn mowers, boats, tractors, personal watercraft, all terrain vehicles, and a multitude of other devices).
Use of the two pin type of connector that can be utilized with lighting devices of the invention can provide additional advantages including but not limited to direct connectability to the lighting harness of a vehicle tow package and/or integration into any wiring harness for more permanent need or repeated use.
Because the lighting devices of the invention utilize DC power, the systems of the invention can be utilized in conjunction with almost any solar power system.
In compliance with the statute, the subject matter disclosed herein has been described in language more or less specific as to structural and methodical features. It is to be understood, however, that the claims are not limited to the specific features shown and described, since the means herein disclosed comprise example embodiments. The claims are thus to be afforded full scope as literally worded, and to be appropriately interpreted in accordance with the doctrine of equivalents.