The present invention relates to surface processing machines for mounting surface processing tools and, more particularly, to mounting means for rotatably mounting circular brushes on the arms of motor driven spider arm assemblies of such machines.
Typically, when large area concrete floors are installed, they may be surface finished, e.g., texturized, cleaned, prepared for subsequent application of a penetrating sealer or other substance, using a surface processing machine, such as conventional walk behind floor polishing-type machines 20 comprising a gas or electric engine 22, a handle 24 for machine control and steering and a circular rotating brush 26 driven by engine 22, as shown in
It is known that during the installation of concrete floors, the troweling and finishing operation is performed on the wet concrete using either walk-behind or ride-on power trowels. Inasmuch as at least one type of power trowel machine is generally already on site during the installation of concrete floors, the present invention seeks to use the on-site availability of these machines for surface finishing purposes. In addition, generally, concrete contractors do not have floor polishing machines on site and typically do not own such machines. Therefore, where conventional floor polishing machines are used to surface finish concrete surfaces, concrete contractors have to invest in and own or lease separate, expensive pieces of equipment.
In one of its forms, the present invention takes advantage of the larger finished area attainable with ride-on power trowel machines by converting these power trowel machines to surface finishing machines suitable for tasks other than troweling. Ride-on power trowel machines typically range in size from approximately 6 feet to slightly more than 10 feet in width and produce a troweled area of up to 40 square feet. The largest units weigh more than a ton and can finish about 30,000 square feet per day. Ride on trowels, such as the trowel machine illustrated in
Converting walk-behind or ride-on troweling machines to surface finishing machines involves providing mounting means which allows the rapid, on-site substitution of finishing tools, such as circular brushes, on the spider arms in place of the trowel blades which were used during the installation of the concrete floor. The mounting means of the present invention has the advantage that it can mount surface processing tools, such as scrubbing, brushing, buffing, grinding and polishing tools, on the spider arms using readily available hand tools in a very short period of time without need for heavy or expensive equipment. The surface finishing tools are mounted to each of the spider arms, desirably using a mounting bar, in such a way that, as the spider arms rotate about the hub, each of the surface polishing tools, e.g., circular brushes, on each arm is free to spin about a mounting axis perpendicular to the spider arms and parallel to the axis of rotation of the spider arms. By allowing circular brushes to rotate freely about the axis, the brushes will wear more uniformly than if they were rigidly mounted to the arms.
It is, therefore, a primary object of the present invention to provide a mounting adapter for surface processing tools which allows their use on conventional power trowel machines having spider assembly arms.
It is another object of the present invention to provide a mounting adapter which allows advantage to be taken of the presence at a concrete floor construction site of high square footage capacity power trowel machines for surface processing purposes.
It is still another object of the present invention to provide a mounting adapter which allows the rapid, on-site substitution of surface processing tools on spider arms in place of the trowel blades used during concrete floor installation.
It is yet another object of the present invention to provide a mounting adapter for surface processing tools on spider assemblies which allows the surface processing tools to spin freely about their axes while the spider arms are rotatably driven in order to encourage more uniform wear of the tools and a longer useful life.
It is another object of the present invention to provide a mounting adapter which greatly increases the strength of the attachment between the mounting shank and the mounting bar and between the mounting bar and the spider arm.
The foregoing and other objects are achieved in accordance with the present invention by providing a mounting assembly for rotatably mounting a tool holding means comprising a tool holder body having first and second surfaces, a surface processing tool mounted on said first surface and an aperture extending through said second surface, on at least one motor driven rotatable arm of a surface processing apparatus, on an axis substantially parallel to the axis of rotation of said motor driven arm, whereby said surface processing tool can spin freely about its axis as said arm is rotatably driven by said motor, said mounting assembly comprising:
In accordance with one aspect of the invention, the elongate mounting means includes a threaded aperture for receiving the threaded end portion of the shank means within the threaded aperture and the threaded aperture includes a counterbore for receiving the end portion of the smooth surfaced portion which is adjacent the threaded end portion.
In accordance with another aspect of the invention, the bearing means includes first and second relatively rotatable, concentric hubs, the first hub being supported by the second surface of the tool holder body such that the bearing means is concentric with the aperture therein, the first hub has a first central bore, the second hub has a second central bore concentric with the first central bore and is mounted within the first central bore and the elongate shank means extends through the second central bore with the threaded end portion of the shank and the end portion of the smooth surfaced portion which is adjacent the threaded end portion projecting from the second central bore and received by the threaded and counterbored aperture in the mounting means.
In accordance with still another aspect of the invention, the bearing means comprises a hollow cylindrical, elongate sleeve having an outside diameter smaller than the diameter of the aperture in the tool holding means and a circular flange extending radially outwardly from the periphery of one end of the sleeve for maintaining the sleeve within the aperture and the elongate shank means extends through the sleeve with the threaded end portion of the shank and the end portion of the smooth surfaced portion which is adjacent the threaded end portion projecting from the sleeve and received by the threaded and counterbored aperture in the mounting means.
Referring to
It will also be appreciated that although the mounting means of the present invention will be described herein with reference to ride-on surface processing machines due to the unique advantage they offer in terms of square feet of concrete which can be finished per day, the mounting means can, of course, be used with walk-behind surface processing machines which also conventionally use downwardly projecting rotor or spider assemblies for mounting trowel blades. A typical walk-behind surface processing machine mounting trowel blades for finishing wet concrete is illustrated in
The mounting means of the present invention will be described herein with reference to circular brushes; however, it will be appreciated that the mounting means can, of course, be used with other surface processing tools, such as scrubbers, buffers, grinders, polishers, and the like. Referring to
Initially a rotary bearing 80 is mounted, e.g., via bolts 74 and nuts 76, on the upper surface 56b of brush cover plate 56 and positioned thereon such that bearing 80 is concentric with central aperture 58. Bearing 80 may be any type of bearing, e.g., ball bearing, roller bearing, fluid bearing, magnetic bearing, etc., which will permit each of the brushes 52 on each arm 32 to spin freely about its mounting axis perpendicular to the arms. In a preferred embodiment, bearing 80 includes a stationary hub 82 having a central bore 83, which is mounted to the brush cover plate upper surface 56b, a rotating hub 84 having a central bore 85 mounted within the central bore 83 of stationary hub 82 and fluid bearing means 86 sealed within bearing 80 and between hubs 82, 84 to facilitate concentric rotation of the hubs about a common axis, which is the central axis 59 of central aperture 58. A threaded, radially extending lubrication port (not shown) is desirably formed in stationary hub 82 to facilitate the injection of lubricant, when required. The lubrication port is closed by a grease port through which the lubricant may be injected.
With bearing 80 bolted in place on the upper surface 56b, end 70 of mounting shank 60 is inserted into the central aperture 58 of cover plate 56 from the brush side of cover plate 56 and extends through central bore 85 of rotating hub 84 with threaded portion 68 and the upper end portion of smooth cylindrical shank portion 66 emerging from the central bore 85. The diameter of shank head 62 approximates the diameter of central aperture 58 but is slightly smaller so that the portion of head 62 which remains within central aperture 58 when shank 60 is fully inserted within rotating hub 82 does not frictionally engage the side walls of central aperture 58 as brush assembly 50 spins on mounting shank 60. Cylindrical shank portion 66 has a smaller diameter than shank head 62 to define an annular shoulder 63 therebetween which seats against the underside of rotating hub 84 when mounting shank 60 is fully inserted therewithin. Cylindrical shank portion 66 has a diameter which allows central aperture 58 of brush assembly 50 to rotate freely about shank head 62 with just enough play to allow bearing 80 to absorb forces encountered during use, such as brush 52 striking bumps on the floor or brush cover plate 56 impacting with walls, and the like. The threaded portion 68 projecting from rotating hub 84 is threaded into central threaded aperture 90 in mounting bar 72, which includes a counterbore 90a to receive upper end portion 66a of smooth cylindrical shank portion 66. In this manner, mounting shank 60 is firmly seated between the underside of rotating hub 84 and mounting bar 72. By having end portion 66a extend into counterbore 90a, the strength of the connection between mounting shank 60 and mounting bar 72 is greatly increased.
Shank 60 is so dimensioned that, when thus mounted, the smooth portion 66 of mounting shank 60 is rotationally closely adjacent the inner diameter of rotating hub 84 and the brush assembly 50 is securely mounted on mounting bar 72, yet is free to spin on the axis provided by mounting shank 60. A recessed aperture 88, such as a hexagonal aperture, is formed in end 64 of mounting shank 60 to facilitate threading mounting bar 72 onto threaded portion 68 of shank 60.
Additional apertures 92 are provided in mounting bar 72 for attaching the brush assembly 50 to the rotor arms of the power trowel using at least two bolts, which extend through the rotor arms and are received in apertures 92. An advantage of the present mounting adapter is that, by virtue of mounting bar 72, it permits the brush assembly 50 be attached to the arms 32 of spider assembly 30 using multiple bolts to provide added strength and reduce wear at the area of greatest operational stress. In addition, inasmuch as the mounting adapter of the present invention will be used with spider assemblies of many different manufacturers, the mounting bar 72 serves as a readily interchangeable interface between the mounting adapter and the spider assembly and can be readily altered to suit the configuration and bolt hole locations of the spider assembly. It will be appreciated that the mounting means need not be a mounting bar, but can be any well known mounting means, such as a channel.
Referring to
Initially a hollow cylindrical sleeve 100 is inserted through the central aperture 58 of cover plate 56 toward the hollow center 54 of brush assembly 50. One end of sleeve 100 has a circular flange 102 extending radially outwardly from the sleeve periphery to define a collar which seats upon the top side 56b of brush cover plate 56, to prevent the sleeve 100 from falling through aperture 58, while the cylindrical length of sleeve 100 extends into central aperture 58 toward the hollow center 54 of brush assembly 50. Mounting shank 60 is inserted into sleeve 100 from the brush side of cover plate 56 with shank head 62 overlying the end of sleeve 100 at the underside 56a of brush cover plate 56. The threaded portion 68 and the upper end portion 66a of smooth cylindrical shank portion 66 emerge from the collared end of sleeve 100. The threaded portion 68 projecting from sleeve 100 is threaded into central threaded aperture 90 in mounting bar 72, which includes a counterbore 90a to receive upper end portion 66a of smooth cylindrical shank portion 66. By having end portion 66a extend into the counterbore 90a, the strength of the connection between mounting shank 60 and mounting bar 72 is greatly increased.
Shank 60 is so dimensioned that, when thus mounted, the smooth portion 66 of mounting shank 60 is rotationally closely adjacent the inner diameter of sleeve 100 and the brush assembly is securely mounted on mounting bar 72, yet is free to spin on the axis provided by mounting shank 60. Desirably, with the brush assembly 50 securely threaded into aperture 90 of mounting bar 72, the length of the mounting shank between the underside of shank head 62 and the surface of mounting bar 72 adjacent the top side 56b of cover plate 56 is about 1/16 inch longer than the length of sleeve 100 to provide the free space S necessary for brush assembly 50 to be able to freely spin about mounting shank 60.
As with the first embodiment, additional apertures 92 are provided in mounting bar 72 for attaching the brush assembly 50 to the rotor arms of the power trowel using at least two bolts, which extend through the rotor arms and are received in apertures 92. An advantage of the present mounting adapter is that, by virtue of mounting bar 72, it permits the brush assembly 50 be attached to the arms 32 of spider assembly 30 using multiple bolts to provide added strength and reduce wear at the area of greatest operational stress. In addition, inasmuch as the mounting adapter of the present invention will be used with spider assemblies of many different manufacturers, the mounting bar 72 serves as a readily interchangeable interface between the mounting adapter and the spider assembly and can be readily altered to suit the configuration and bolt hole locations of the spider assembly. It will be appreciated that the mounting means need not be a mounting bar, but can be any well known mounting means, such as a channel.
While the present invention has been described in terms of specific embodiments thereof, it will be understood that no limitations are intended to the details of construction or design other than as defined in the appended claims.
This is a non-provisional application based upon U.S. provisional applications Ser. No. 60/961,862, filed Jul. 25, 2007, now pending, and Ser. No. 61/065,954, filed Feb. 16, 2008, now pending.
Number | Date | Country | |
---|---|---|---|
60961862 | Jul 2007 | US | |
61065954 | Feb 2008 | US |