The present invention relates to photovoltaic modules and, more particularly, mounting apparatus for photovoltaic modules for roofing systems and methods for installing same.
Photovoltaic systems having solar panels are commonly installed on roofing of structures. What is needed is mounting apparatus for photovoltaic modules having features for efficient installation thereof.
In some embodiments, a system includes a plurality of photovoltaic modules configured to be installed on a roof deck, each of the photovoltaic modules includes a mat having a first edge, a spacer having a first edge, wherein the first edge of the mat is attached to the first edge of the spacer wherein the spacer includes a plurality of support members, wherein each of the support members includes a first end, a second end opposite the first end, and a first ledge located at the first end, and at least one solar module mounted to the plurality of support members, wherein the at least one solar module of one of the plurality of photovoltaic modules and the first ledge of the one of the plurality of photovoltaic modules form a first space therebetween, wherein the first space is sized and shaped to receive an edge of a solar module of another of the plurality of photovoltaic modules, and wherein the spacer of one of the plurality of photovoltaic modules overlays the mat of another of the plurality of photovoltaic modules.
In some embodiments, the mat includes a first surface, and wherein the spacer overlays the first surface of the mat. In some embodiments, the spacer includes a base, and wherein the plurality of support members extends from the base. In some embodiments, the base of the spacer includes a first surface and the plurality of support members extends outwardly from the first surface of the base. In some embodiments, the spacer includes a first end and a second end opposite the first end, and wherein the plurality of support members extends from the first end to the second end. In some embodiments, each of the plurality of support members is spaced apart from at least an adjacent one other of the plurality of support members. In some embodiments, the spacer includes a plurality of gaps, each of which is formed between a corresponding pair of the plurality of support members, and wherein each of the plurality of gaps is sized and shaped to receive electrical wiring. In some embodiments, at least one of the plurality of gaps is sized and shaped to receive an electrical component. In some embodiments, the spacer includes a third end extending from the first end to the second end, and a fourth end opposite the third end and extending from the first end to the second end, and wherein each of the plurality of support members extends from the third end to the fourth end.
In some embodiments, each of the plurality of support members includes an upper surface, and wherein the at least one solar module is mounted on the upper surface of each of the plurality of support members. In some embodiments, each of the plurality of support members includes a first height measured from the first surface of the base of the spacer to the upper surface of the support member, and the first ledge includes a second height measured from the first surface of the base of the spacer to an upper surface of the first ledge, and wherein the second height is less than the first height. In some embodiments, the at least one solar module and the first ledge form a first space therebetween, and wherein the first space is sized and shaped to receive at least one electrical component. In some embodiments, each of the plurality of support members includes a second ledge located at the second end thereof. In some embodiments, the second ledge includes a third height measured from the first surface of the base of the spacer to an upper surface of the second ledge, and wherein the third height is less than the first height, and wherein the third height is greater than the second height.
In some embodiments, a system includes a roofing layer configured to be installed directly on a roof deck, the roofing layer including a first surface, and a plurality of hooks installed on the first surface wherein the plurality of hooks is arranged in a pattern, wherein the pattern includes a plurality of rows and a plurality of columns; and a plurality of solar modules configured to be attached to the plurality of hooks. In some embodiments, the roofing layer includes a roofing membrane. In some embodiments, each of the plurality of hooks includes a double wing hook. In some embodiments, each of the plurality of hooks includes a mounting portion, a pair of feet extending from the mounting portion, and a hook portion extending from the mounting portion and offset from the pair of feet to form a slot therebetween, wherein a first edge of one of the plurality of solar modules engages the slot of one of the plurality of hooks, and a second edge of the one of the plurality of solar modules engages the hook portion of at least another one of the plurality of hooks. In some embodiments, the roofing layer includes at least one roofing shingle, wherein the roofing shingle includes a head lap, and wherein the mounting portion of at least one of the plurality of hooks is attached to the head lap of a corresponding one of the at least one roofing shingle. In some embodiments, the pattern is a long-staggered pattern.
Referring to
Referring to
Referring to
Referring to
In some embodiments, the mat 12 is composed of a polymer. In some embodiments, the mat 12 includes thermoplastic polyolefin (TPO). In other embodiments, the mat 12 is composed of polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyetheretherketone (PEEK), polyaryletherketone (PAEK), polyarylate (PAR), polyetherimide (PEI), polyarylsulfone (PAS), polyethersulfone (PES), polyamideimide (PAI), or polyimide; polyvinyl chloride (PVC); ethylene propylene diene monomer (EPDM) rubber; silicone rubber; fluoropolymers—ethylene tetrafluoroethylene (ETFE), polyvinylidine fluoride (PVDF), tetrafluoroethylene-hexafluoropropylene copolymers (FEP), and tetrafluoroethylene-hexafluoropropylene-vinylidene fluoride copolymers (THV), or blends thereof.
Still referring to
Referring to
In some embodiments, the upper surface 72 extends obliquely in a range of 0.1 degree to 5 degrees relative to the base 54. In some embodiments, the upper surface 72 extends obliquely in a range of 0.1 degree to 4.5 degrees relative to the base 54. In some embodiments, the upper surface 72 extends obliquely in a range of 0.1 degree to 4 degrees relative to the base 54. In some embodiments, the upper surface 72 extends obliquely in a range of 0.1 degree to 3.5 degrees relative to the base 54. In some embodiments, the upper surface 72 extends obliquely in a range of 0.1 degree to 3 degrees relative to the base 54. In some embodiments, the upper surface 72 extends obliquely in a range of 0.1 degree to 2.5 degrees relative to the base 54. In some embodiments, the upper surface 72 extends obliquely in a range of 0.1 degree to 2 degrees relative to the base 54. In some embodiments, the upper surface 72 extends obliquely in a range of 0.1 degree to 1.5 degrees relative to the base 54. In some embodiments, the upper surface 72 extends obliquely in a range of 0.1 degree to 1 degree relative to the base 54. In some embodiments, the upper surface 72 extends obliquely in a range of 0.1 degree to 0.5 degree relative to the base 54.
In some embodiments, the upper surface 72 extends obliquely in a range of 0.5 degree to 5 degrees relative to the base 54. In some embodiments, the upper surface 72 extends obliquely in a range of 0.5 degree to 4.5 degrees relative to the base 54. In some embodiments, the upper surface 72 extends obliquely in a range of 0.5 degree to 4 degrees relative to the base 54. In some embodiments, the upper surface 72 extends obliquely in a range of 0.5 degree to 3.5 degrees relative to the base 54. In some embodiments, the upper surface 72 extends obliquely in a range of 0.5 degree to 3 degrees relative to the base 54. In some embodiments, the upper surface 72 extends obliquely in a range of 0.5 degree to 2.5 degrees relative to the base 54. In some embodiments, the upper surface 72 extends obliquely in a range of 0.5 degree to 2 degrees relative to the base 54. In some embodiments, the upper surface 72 extends obliquely in a range of 0.5 degree to 1.5 degrees relative to the base 54. In some embodiments, the upper surface 72 extends obliquely in a range of 0.5 degree to 1 degree relative to the base 54.
In some embodiments, the upper surface 72 extends obliquely in a range of 1 degree to 5 degrees relative to the base 54. In some embodiments, the upper surface 72 extends obliquely in a range of 1 degree to 4.5 degrees relative to the base 54. In some embodiments, the upper surface 72 extends obliquely in a range of 1 degree to 4 degrees relative to the base 54. In some embodiments, the upper surface 72 extends obliquely in a range of 1 degree to 3.5 degrees relative to the base 54. In some embodiments, the upper surface 72 extends obliquely in a range of 1 degree to 3 degrees relative to the base 54. In some embodiments, the upper surface 72 extends obliquely in a range of 1 degree to 2.5 degrees relative to the base 54. In some embodiments, the upper surface 72 extends obliquely in a range of 1 degree to 2 degrees relative to the base 54. In some embodiments, the upper surface 72 extends obliquely in a range of 1 degree to 1.5 degrees relative to the base 54.
In some embodiments, the upper surface 72 extends obliquely in a range of 1.5 degrees to 5 degrees relative to the base 54. In some embodiments, the upper surface 72 extends obliquely in a range of 1.5 degrees to 4.5 degrees relative to the base 54. In some embodiments, the upper surface 72 extends obliquely in a range of 1.5 degrees to 4 degrees relative to the base 54. In some embodiments, the upper surface 72 extends obliquely in a range of 1.5 degrees to 3.5 degrees relative to the base 54. In some embodiments, the upper surface 72 extends obliquely in a range of 1.5 degrees to 3 degrees relative to the base 54. In some embodiments, the upper surface 72 extends obliquely in a range of 1.5 degrees to 2.5 degrees relative to the base 54. In some embodiments, the upper surface 72 extends obliquely in a range of 1.5 degrees to 2 degrees relative to the base 54.
In some embodiments, the upper surface 72 extends obliquely in a range of 2 degrees to 5 degrees relative to the base 54. In some embodiments, the upper surface 72 extends obliquely in a range of 2 degrees to 4.5 degrees relative to the base 54. In some embodiments, the upper surface 72 extends obliquely in a range of 2 degrees to 4 degrees relative to the base 54. In some embodiments, the upper surface 72 extends obliquely in a range of 2 degrees to 3.5 degrees relative to the base 54. In some embodiments, the upper surface 72 extends obliquely in a range of 2 degrees to 3 degrees relative to the base 54. In some embodiments, the upper surface 72 extends obliquely in a range of 2 degrees to 2.5 degrees relative to the base 54.
In some embodiments, the upper surface 72 extends obliquely in a range of 2.5 degrees to 5 degrees relative to the base 54. In some embodiments, the upper surface 72 extends obliquely in a range of 2.5 degrees to 4.5 degrees relative to the base 54. In some embodiments, the upper surface 72 extends obliquely in a range of 2.5 degrees to 4 degrees relative to the base 54. In some embodiments, the upper surface 72 extends obliquely in a range of 2.5 degrees to 3.5 degrees relative to the base 54. In some embodiments, the upper surface 72 extends obliquely in a range of 2.5 degrees to 3 degrees relative to the base 54.
In some embodiments, the upper surface 72 extends obliquely in a range of 3 degrees to 5 degrees relative to the base 54. In some embodiments, the upper surface 72 extends obliquely in a range of 3 degrees to 4.5 degrees relative to the base 54. In some embodiments, the upper surface 72 extends obliquely in a range of 3 degrees to 4 degrees relative to the base 54. In some embodiments, the upper surface 72 extends obliquely in a range of 3 degrees to 3.5 degrees relative to the base 54.
In some embodiments, the upper surface 72 extends obliquely in a range of 3.5 degrees to 5 degrees relative to the base 54. In some embodiments, the upper surface 72 extends obliquely in a range of 3.5 degrees to 4.5 degrees relative to the base 54. In some embodiments, the upper surface 72 extends obliquely in a range of 3.5 degrees to 4 degrees relative to the base 54.
In some embodiments, the upper surface 72 extends obliquely in a range of 4 degrees to 5 degrees relative to the base 54. In some embodiments, the upper surface 72 extends obliquely in a range of 4 degrees to 4.5 degrees relative to the base 54. In some embodiments, the upper surface 72 extends obliquely in a range of 4.5 degrees to 5 degrees relative to the base 54.
In some embodiments, the upper surface 72 extends obliquely 0.1 degree relative to the base 54. In some embodiments, the upper surface 72 extends obliquely 0.5 degree relative to the base 54. In some embodiments, the upper surface 72 extends obliquely 1 degree relative to the base 54. In some embodiments, the upper surface 72 extends obliquely 1.5 degrees relative to the base 54. In some embodiments, the upper surface 72 extends obliquely 2 degrees relative to the base 54. In some embodiments, the upper surface 72 extends obliquely 2.5 degrees relative to the base 54. In some embodiments, the upper surface 72 extends obliquely 3 degrees relative to the base 54. In some embodiments, the upper surface 72 extends obliquely 3.5 degrees relative to the base 54. In some embodiments, the upper surface 72 extends obliquely 4 degrees relative to the base 54. In some embodiments, the upper surface 72 extends obliquely 4.5 degrees relative to the base 54. In some embodiments, the upper surface 72 extends obliquely 5 degrees relative to the base 54.
Still referring to
Still referring to
In some embodiments, the first height H1 is in a range of 10 mm to 20 mm. In some embodiments, the first height H1 is in a range of 10 mm to 19 mm. In some embodiments, the first height H1 is in a range of 10 mm to 18 mm. In some embodiments, the first height H1 is in a range of 10 mm to 17 mm. In some embodiments, the first height H1 is in a range of 10 mm to 16 mm. In some embodiments, the first height H1 is in a range of 10 mm to 15 mm. In some embodiments, the first height H1 is in a range of 10 mm to 14 mm. In some embodiments, the first height H1 is in a range of 10 mm to 13 mm. In some embodiments, the first height H1 is in a range of 10 mm to 12 mm. In some embodiments, the first height H1 is in a range of 10 mm to 11 mm.
In some embodiments, the first height H1 is in a range of 11 mm to 20 mm. In some embodiments, the first height H1 is in a range of 11 mm to 19 mm. In some embodiments, the first height H1 is in a range of 11 mm to 18 mm. In some embodiments, the first height H1 is in a range of 11 mm to 17 mm. In some embodiments, the first height H1 is in a range of 11 mm to 16 mm. In some embodiments, the first height H1 is in a range of 11 mm to 15 mm. In some embodiments, the first height H1 is in a range of 11 mm to 14 mm. In some embodiments, the first height H1 is in a range of 11 mm to 13 mm. In some embodiments, the first height H1 is in a range of 11 mm to 12 mm.
In some embodiments, the first height H1 is in a range of 12 mm to 20 mm. In some embodiments, the first height H1 is in a range of 12 mm to 19 mm. In some embodiments, the first height H1 is in a range of 12 mm to 18 mm. In some embodiments, the first height H1 is in a range of 12 mm to 17 mm. In some embodiments, the first height H1 is in a range of 12 mm to 16 mm. In some embodiments, the first height H1 is in a range of 12 mm to 15 mm. In some embodiments, the first height H1 is in a range of 12 mm to 14 mm. In some embodiments, the first height H1 is in a range of 12 mm to 13 mm.
In some embodiments, the first height H1 is in a range of 13 mm to 20 mm. In some embodiments, the first height H1 is in a range of 13 mm to 19 mm. In some embodiments, the first height H1 is in a range of 13 mm to 18 mm. In some embodiments, the first height H1 is in a range of 13 mm to 17 mm. In some embodiments, the first height H1 is in a range of 13 mm to 16 mm. In some embodiments, the first height H1 is in a range of 13 mm to 15 mm. In some embodiments, the first height H1 is in a range of 13 mm to 14 mm.
In some embodiments, the first height H1 is in a range of 14 mm to 20 mm. In some embodiments, the first height H1 is in a range of 14 mm to 19 mm. In some embodiments, the first height H1 is in a range of 14 mm to 18 mm. In some embodiments, the first height H1 is in a range of 14 mm to 17 mm. In some embodiments, the first height H1 is in a range of 14 mm to 16 mm. In some embodiments, the first height H1 is in a range of 14 mm to 15 mm.
In some embodiments, the first height H1 is in a range of 15 mm to 20 mm. In some embodiments, the first height H1 is in a range of 15 mm to 19 mm. In some embodiments, the first height H1 is in a range of 15 mm to 18 mm. In some embodiments, the first height H1 is in a range of 15 mm to 17 mm. In some embodiments, the first height H1 is in a range of 15 mm to 16 mm.
In some embodiments, the first height H1 is in a range of 16 mm to 20 mm. In some embodiments, the first height H1 is in a range of 16 mm to 19 mm. In some embodiments, the first height H1 is in a range of 16 mm to 18 mm. In some embodiments, the first height H1 is in a range of 16 mm to 17 mm.
In some embodiments, the first height H1 is in a range of 17 mm to 20 mm. In some embodiments, the first height H1 is in a range of 17 mm to 19 mm. In some embodiments, the first height H1 is in a range of 17 mm to 18 mm. In some embodiments, the first height H1 is in a range of 18 mm to 20 mm. In some embodiments, the first height H1 is in a range of 18 mm to 19 mm. In some embodiments, the first height H1 is in a range of 19 mm to 20 mm.
In some embodiments, the first height H1 is 10 mm. In some embodiments, the first height H1 is 11 mm. In some embodiments, the first height H1 is 12 mm. In some embodiments, the first height H1 is 13 mm. In some embodiments, the first height H1 is 14 mm. In some embodiments, the first height H1 is 15 mm. In some embodiments, the first height H1 is 16 mm. In some embodiments, the first height H1 is 17 mm. In some embodiments, the first height H1 is 18 mm. In some embodiments, the first height H1 is 19 mm. In some embodiments, the first height H1 is 20 mm.
In some embodiments, the second height H2 is in a range of 1 mm to 5 mm. In some embodiments, the second height H2 is in a range of 1 mm to 4 mm. In some embodiments, the second height H2 is in a range of 1 mm to 3 mm. In some embodiments, the second height H2 is in a range of 1 mm to 2 mm.
In some embodiments, the second height H2 is in a range of 2 mm to 5 mm. In some embodiments, the second height H2 is in a range of 2 mm to 4 mm. In some embodiments, the second height H2 is in a range of 2 mm to 3 mm. In some embodiments, the second height H2 is in a range of 3 mm to 5 mm. In some embodiments, the second height H2 is in a range of 3 mm to 4 mm. In some embodiments, the second height H2 is in a range of 4 mm to 5 mm.
In some embodiments, the second height H2 is 1 mm. In some embodiments, the second height H2 is 2 mm. In some embodiments, the second height H2 is 3 mm. In some embodiments, the second height H2 is 4 mm. In some embodiments, the second height H2 is 5 mm.
In some embodiments, the third height H3 is in a range of 15 mm to 25 mm. In some embodiments, the third height H3 is in a range of 15 mm to 24 mm. In some embodiments, the third height H3 is in a range of 15 mm to 23 mm. In some embodiments, the third height H3 is in a range of 15 mm to 22 mm. In some embodiments, the third height H3 is in a range of 15 mm to 21 mm. In some embodiments, the third height H3 is in a range of 15 mm to 20 mm. In some embodiments, the third height H3 is in a range of 15 mm to 19 mm. In some embodiments, the third height H3 is in a range of 15 mm to 18 mm. In some embodiments, the third height H3 is in a range of 15 mm to 17 mm. In some embodiments, the third height H3 is in a range of 15 mm to 16 mm.
In some embodiments, the third height H3 is in a range of 16 mm to 25 mm. In some embodiments, the third height H3 is in a range of 16 mm to 24 mm. In some embodiments, the third height H3 is in a range of 16 mm to 23 mm. In some embodiments, the third height H3 is in a range of 16 mm to 22 mm. In some embodiments, the third height H3 is in a range of 16 mm to 21 mm. In some embodiments, the third height H3 is in a range of 16 mm to 20 mm. In some embodiments, the third height H3 is in a range of 16 mm to 19 mm. In some embodiments, the third height H3 is in a range of 16 mm to 18 mm. In some embodiments, the third height H3 is in a range of 16 mm to 17 mm.
In some embodiments, the third height H3 is in a range of 17 mm to 25 mm. In some embodiments, the third height H3 is in a range of 17 mm to 24 mm. In some embodiments, the third height H3 is in a range of 17 mm to 23 mm. In some embodiments, the third height H3 is in a range of 17 mm to 22 mm. In some embodiments, the third height H3 is in a range of 17 mm to 21 mm. In some embodiments, the third height H3 is in a range of 17 mm to 20 mm. In some embodiments, the third height H3 is in a range of 17 mm to 19 mm. In some embodiments, the third height H3 is in a range of 17 mm to 18 mm.
In some embodiments, the third height H3 is in a range of 18 mm to 25 mm. In some embodiments, the third height H3 is in a range of 18 mm to 24 mm. In some embodiments, the third height H3 is in a range of 18 mm to 23 mm. In some embodiments, the third height H3 is in a range of 18 mm to 22 mm. In some embodiments, the third height H3 is in a range of 18 mm to 21 mm. In some embodiments, the third height H3 is in a range of 18 mm to 20 mm. In some embodiments, the third height H3 is in a range of 18 mm to 19 mm.
In some embodiments, the third height H3 is in a range of 19 mm to 25 mm. In some embodiments, the third height H3 is in a range of 19 mm to 24 mm. In some embodiments, the third height H3 is in a range of 19 mm to 23 mm. In some embodiments, the third height H3 is in a range of 19 mm to 22 mm. In some embodiments, the third height H3 is in a range of 19 mm to 21 mm. In some embodiments, the third height H3 is in a range of 19 mm to 20 mm.
In some embodiments, the third height H3 is in a range of 20 mm to 25 mm. In some embodiments, the third height H3 is in a range of 20 mm to 24 mm. In some embodiments, the third height H3 is in a range of 20 mm to 23 mm. In some embodiments, the third height H3 is in a range of 20 mm to 22 mm. In some embodiments, the third height H3 is in a range of 20 mm to 21 mm.
In some embodiments, the third height H3 is in a range of 21 mm to 25 mm. In some embodiments, the third height H3 is in a range of 21 mm to 24 mm. In some embodiments, the third height H3 is in a range of 21 mm to 23 mm. In some embodiments, the third height H3 is in a range of 21 mm to 22 mm.
In some embodiments, the third height H3 is in a range of 22 mm to 25 mm. In some embodiments, the third height H3 is in a range of 22 mm to 24 mm. In some embodiments, the third height H3 is in a range of 22 mm to 23 mm. In some embodiments, the third height H3 is in a range of 23 mm to 25 mm. In some embodiments, the third height H3 is in a range of 23 mm to 24 mm. In some embodiments, the third height H3 is in a range of 24 mm to 25 mm.
In some embodiments, the third height H3 is 15 mm. In some embodiments, the third height H3 is 16 mm. In some embodiments, the third height H3 is 17 mm. In some embodiments, the third height H3 is 18 mm. In some embodiments, the third height H3 is 19 mm. In some embodiments, the third height H3 is 20 mm. In some embodiments, the third height H3 is 21 mm. In some embodiments, the third height H3 is 22 mm. In some embodiments, the third height H3 is 23 mm. In some embodiments, the third height H3 is 24 mm. In some embodiments, the third height H3 is 25 mm.
In some embodiments, the fourth height H4 is in a range of 5 mm to 15 mm. In some embodiments, the fourth height H4 is in a range of 5 mm to 14 mm. In some embodiments, the fourth height H4 is in a range of 5 mm to 13 mm. In some embodiments, the fourth height H4 is in a range of 5 mm to 12 mm. In some embodiments, the fourth height H4 is in a range of 5 mm to 11 mm. In some embodiments, the fourth height H4 is in a range of 5 mm to 10 mm. In some embodiments, the fourth height H4 is in a range of 5 mm to 9 mm. In some embodiments, the fourth height H4 is in a range of 5 mm to 8 mm. In some embodiments, the fourth height H4 is in a range of 5 mm to 7 mm. In some embodiments, the fourth height H4 is in a range of 5 mm to 6 mm.
In some embodiments, the fourth height H4 is in a range of 6 mm to 15 mm. In some embodiments, the fourth height H4 is in a range of 6 mm to 14 mm. In some embodiments, the fourth height H4 is in a range of 6 mm to 13 mm. In some embodiments, the fourth height H4 is in a range of 6 mm to 12 mm. In some embodiments, the fourth height H4 is in a range of 6 mm to 11 mm. In some embodiments, the fourth height H4 is in a range of 6 mm to 10 mm. In some embodiments, the fourth height H4 is in a range of 6 mm to 9 mm. In some embodiments, the fourth height H4 is in a range of 6 mm to 8 mm. In some embodiments, the fourth height H4 is in a range of 6 mm to 7 mm.
In some embodiments, the fourth height H4 is in a range of 7 mm to 15 mm. In some embodiments, the fourth height H4 is in a range of 7 mm to 14 mm. In some embodiments, the fourth height H4 is in a range of 7 mm to 13 mm. In some embodiments, the fourth height H4 is in a range of 7 mm to 12 mm. In some embodiments, the fourth height H4 is in a range of 7 mm to 11 mm. In some embodiments, the fourth height H4 is in a range of 7 mm to 10 mm. In some embodiments, the fourth height H4 is in a range of 7 mm to 9 mm. In some embodiments, the fourth height H4 is in a range of 7 mm to 8 mm.
In some embodiments, the fourth height H4 is in a range of 8 mm to 15 mm. In some embodiments, the fourth height H4 is in a range of 8 mm to 14 mm. In some embodiments, the fourth height H4 is in a range of 8 mm to 13 mm. In some embodiments, the fourth height H4 is in a range of 8 mm to 12 mm. In some embodiments, the fourth height H4 is in a range of 8 mm to 11 mm. In some embodiments, the fourth height H4 is in a range of 8 mm to 10 mm. In some embodiments, the fourth height H4 is in a range of 8 mm to 9 mm.
In some embodiments, the fourth height H4 is in a range of 9 mm to 15 mm. In some embodiments, the fourth height H4 is in a range of 9 mm to 14 mm. In some embodiments, the fourth height H4 is in a range of 9 mm to 13 mm. In some embodiments, the fourth height H4 is in a range of 9 mm to 12 mm. In some embodiments, the fourth height H4 is in a range of 9 mm to 11 mm. In some embodiments, the fourth height H4 is in a range of 9 mm to 10 mm.
In some embodiments, the fourth height H4 is in a range of 10 mm to 15 mm. In some embodiments, the fourth height H4 is in a range of 10 mm to 14 mm. In some embodiments, the fourth height H4 is in a range of 10 mm to 13 mm. In some embodiments, the fourth height H4 is in a range of 10 mm to 12 mm. In some embodiments, the fourth height H4 is in a range of 10 mm to 11 mm.
In some embodiments, the fourth height H4 is in a range of 11 mm to 15 mm. In some embodiments, the fourth height H4 is in a range of 11 mm to 14 mm. In some embodiments, the fourth height H4 is in a range of 11 mm to 13 mm. In some embodiments, the fourth height H4 is in a range of 11 mm to 12 mm.
In some embodiments, the fourth height H4 is in a range of 12 mm to 15 mm. In some embodiments, the fourth height H4 is in a range of 12 mm to 14 mm. In some embodiments, the fourth height H4 is in a range of 12 mm to 13 mm. In some embodiments, the fourth height H4 is in a range of 13 mm to 15 mm. In some embodiments, the fourth height H4 is in a range of 13 mm to 14 mm. In some embodiments, the fourth height H4 is in a range of 14 mm to 15 mm.
In some embodiments, the fourth height H4 is 5 mm. In some embodiments, the fourth height H4 is 6 mm. In some embodiments, the fourth height H4 is 7 mm. In some embodiments, the fourth height H4 is 8 mm. In some embodiments, the fourth height H4 is 9 mm. In some embodiments, the fourth height H4 is 10 mm. In some embodiments, the fourth height H4 is 11 mm. In some embodiments, the fourth height H4 is 12 mm. In some embodiments, the fourth height H4 is 13 mm. In some embodiments, the fourth height H4 is 14 mm. In some embodiments, the fourth height H4 is 15 mm.
In some embodiments, the solar module 16 and the ledge 86 form a second space 88 therebetween. In some embodiments, the second space 88 of one 10a of the photovoltaic modules 10 is sized and shaped to receive the first edge 27 of the solar module 16 of another 10b photovoltaic module 10 and interlock the photovoltaic modules 10a, 10b. In some embodiments, the solar module 16 of the photovoltaic module 10a overlays and holds-down the first edge 27 of the solar module 16 of the photovoltaic module 10b. In some embodiments, the interlocked photovoltaic modules 10a, 10b promote watershedding.
In some embodiments, the photovoltaic modules 10a, 10b are installed on a roof deck by a plurality of fasteners 90. In some embodiments, the mat 12 is configured to receive the plurality of fasteners 90. In some embodiments, the plurality of fasteners 90 includes a plurality of nails. In some embodiments, the mat 12 includes a head lap 92. In some embodiments, the head lap 92 is configured to receive the plurality of nails. In some embodiments, the second edge 60 of the spacer 14 is attached to the roof deck by an adhesive 94. In certain embodiments, the adhesive 94 includes polyvinyl butyrate, acrylic, silicone, polycarbonate, or pressure sensitive adhesives.
In some embodiments, the spacer 14 of one of the photovoltaic modules 10 overlays the mat 12 of another of the photovoltaic modules 10. In some embodiments, the spacer 14 of one of the photovoltaic modules 10 overlays the head lap 92 of the mat 12 of another of the photovoltaic modules 10.
Referring to
In some embodiments, the spacer 14 is composed of plastic. In some embodiments, the spacer 14 is composed of a polymer. In some embodiments, the polymer is a thermoformed polymer. In some embodiments, the polymer is an injection molded polymer. In some embodiments, the spacer 14 is ultrasonically welded to the mat 12. In some embodiments, the spacer 14 is heat welded to the mat 12. In some embodiments, the spacer 14 is thermally bonded to the mat 12. In some embodiments, the spacer 14 is attached to the mat 12 by an adhesive. In some embodiments, the spacer 14 and the mat 12 are integral with one another. In some embodiments, the solar module 16 is ultrasonically welded to the spacer 14. In some embodiments, the solar module 16 is removably attached to the spacer 14. In some embodiments, the solar module 16 is heat welded to the spacer 14. In some embodiments, the solar module 16 is thermally bonded to the spacer 14. In some embodiments, the solar module 16 is attached to the spacer 14 by an adhesive. In some embodiments, the spacer 14 is composed of metal. In some embodiments, the spacer 14 is composed of aluminum.
Referring to
Referring to
Referring to
Referring to
Referring to
In some embodiments, the at least one mat 512 includes a first end 518 and a second end 520 opposite the first end 518, a first edge 522 extending from the first end 518 to the second end 520, and a second edge 524 opposite the first edge 522 and extending from the first end 518 to the second end 520. In some embodiments, the at least one mat 512 includes a head lap 526. In some embodiments, the at least one solar module 516 includes a first end 528 and a second end 530 opposite the first end 528. In some embodiments, the first end 528 of the at least one solar module 516 is substantially aligned with the first end 518 of the at least one mat 512, and the second end 530 of the at least one solar module 516 is substantially aligned with the at least one second end 520 of the mat 512. In some embodiments, the second end 530 of the at least one solar module 516 is substantially aligned with the first end 518 of the at least one mat 512, and the first end 528 of the at least one solar module 516 is substantially aligned with the at least one second end 520 of the mat 512 (see
In some embodiments, the at least one mat 512 includes a plurality of mats 512. In some embodiments, the roofing system 500 includes a plurality of roofing shingles 544 installed adjacent to the at least one mat 512.
Referring to
Referring to
In some embodiments, a plurality of hooks 650 is installed on the first surface 614 of the roofing layer 612. In some embodiments, the system 600 includes a plurality of solar modules 616 configured to be attached to the plurality of hooks 650. In some embodiments, each of the plurality of hooks 650 includes a double wing hook. In some embodiments, the plurality of hooks 650 is arranged in a defined pattern. In some embodiments, the pattern includes a plurality of rows and a plurality of columns. In some embodiments, the plurality of hooks 650 is arranged in a long-staggered pattern, as shown in
Referring to
In some embodiments, a plurality of hooks 750 includes a mounting portion 752, a pair of legs 754a, 754b extending from the mounting portion 752, and a hook portion 756 extending from the mounting portion 752 and offset from the pair of legs 754a, 754b to form a slot 758 therebetween.
In some embodiments, the pair of legs 754a, 754b are spaced apart and substantially parallel to one another. In some embodiments, the hook portion 756 includes a first portion 755a extending in a first direction and second portion 755b extending in a second direction opposite the first direction. In some embodiments, a slot 757 is formed between the first and second portions 755a, 755b. In some embodiments, each of the legs 754a, 754b includes an extended portion 759 and a foot 760 having a raised portion 761 offset from the extended portion 759. In some embodiments, a first edge 727 of one of the plurality of solar modules 716 engages the slot 758 of one of the plurality of hooks 750, and a second edge 729 of the one of the plurality of solar modules 716 engages the hook portion 756 of at least another one of the plurality of hooks 750. In some embodiments, the hook portion 756 is resiliently biased. In some embodiments, the mounting portion 752 is attached to the head lap 722 of the corresponding one of the plurality of roofing shingles 720. In some embodiments, the mounting portion 752 is configured to receive at least one fastener. In some embodiments, the at least one fastener includes at least one nail.
It should be understood that the embodiments described herein are merely exemplary and that a person skilled in the art may make many variations and modifications without departing from the spirit and scope of the invention. All such variations and modifications are intended to be included within the scope of the invention.
This application is a continuation of U.S. patent application Ser. No. 17/501,606, filed Oct. 14, 2021, entitled “MOUNTING APPARATUS FOR PHOTOVOLTAIC MODULES,” which claims the benefit of U.S. Provisional Patent Application Ser. No. 63/091,428, filed Oct. 14, 2020, entitled “MOUNTING APPARATUS FOR PHOTOVOLTAIC MODULES,” the contents of which are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
1981467 | Radtke | Nov 1934 | A |
3156497 | Lessard | Nov 1964 | A |
4258948 | Hoffmann | Mar 1981 | A |
4336413 | Tourneux | Jun 1982 | A |
4349220 | Carroll et al. | Sep 1982 | A |
4499702 | Turner | Feb 1985 | A |
4636577 | Peterpaul | Jan 1987 | A |
5056288 | Funaki | Oct 1991 | A |
5167579 | Rotter | Dec 1992 | A |
5338369 | Rawlings | Aug 1994 | A |
5409549 | Mori | Apr 1995 | A |
5590495 | Bressler et al. | Jan 1997 | A |
5642596 | Waddington | Jul 1997 | A |
5651837 | Ohtsuka et al. | Jul 1997 | A |
5746839 | Dinwoodie | May 1998 | A |
5951785 | Uchihashi et al. | Sep 1999 | A |
6008450 | Ohtsuka et al. | Dec 1999 | A |
6046399 | Kapner | Apr 2000 | A |
6065256 | Joko et al. | May 2000 | A |
6242685 | Mizukami et al. | Jun 2001 | B1 |
6320114 | Kuechler | Nov 2001 | B1 |
6336304 | Mimura et al. | Jan 2002 | B1 |
6341454 | Koleoglou | Jan 2002 | B1 |
6370828 | Genschorek | Apr 2002 | B1 |
6407329 | Iino et al. | Jun 2002 | B1 |
6453629 | Nakazima et al. | Sep 2002 | B1 |
6465724 | Garvison et al. | Oct 2002 | B1 |
6521821 | Makita et al. | Feb 2003 | B2 |
6576830 | Nagao et al. | Jun 2003 | B2 |
6928781 | Desbois et al. | Aug 2005 | B2 |
6972367 | Federspiel et al. | Dec 2005 | B2 |
7138578 | Komamine | Nov 2006 | B2 |
7155870 | Almy | Jan 2007 | B2 |
7178295 | Dinwoodie | Feb 2007 | B2 |
7487771 | Eiffert et al. | Feb 2009 | B1 |
7587864 | McCaskill et al. | Sep 2009 | B2 |
7678990 | McCaskill et al. | Mar 2010 | B2 |
7678991 | McCaskill et al. | Mar 2010 | B2 |
7748191 | Podirsky | Jul 2010 | B2 |
7819114 | Augenbraun et al. | Oct 2010 | B2 |
7824191 | Podirsky | Nov 2010 | B1 |
7832176 | McCaskill et al. | Nov 2010 | B2 |
8118109 | Hacker | Feb 2012 | B1 |
8168880 | Jacobs et al. | May 2012 | B2 |
8173889 | Kalkanoglu et al. | May 2012 | B2 |
8210570 | Railkar et al. | Jul 2012 | B1 |
8215071 | Lenox | Jul 2012 | B2 |
8276329 | Lenox | Oct 2012 | B2 |
8309840 | Stevens et al. | Nov 2012 | B2 |
8312693 | Cappelli | Nov 2012 | B2 |
8319093 | Kalkanoglu et al. | Nov 2012 | B2 |
8333040 | Shiao et al. | Dec 2012 | B2 |
8371076 | Jones et al. | Feb 2013 | B2 |
8375653 | Shiao et al. | Feb 2013 | B2 |
8404967 | Kalkanoglu et al. | Mar 2013 | B2 |
8410349 | Kalkanoglu et al. | Apr 2013 | B2 |
8418415 | Shiao et al. | Apr 2013 | B2 |
8438796 | Shiao et al. | May 2013 | B2 |
8468754 | Railkar et al. | Jun 2013 | B2 |
8468757 | Krause et al. | Jun 2013 | B2 |
8505249 | Geary | Aug 2013 | B2 |
8512866 | Taylor | Aug 2013 | B2 |
8513517 | Kalkanoglu et al. | Aug 2013 | B2 |
8522493 | Rogers | Sep 2013 | B1 |
8586856 | Kalkanoglu et al. | Nov 2013 | B2 |
8601754 | Jenkins et al. | Dec 2013 | B2 |
8629578 | Kurs et al. | Jan 2014 | B2 |
8646228 | Jenkins | Feb 2014 | B2 |
8656657 | Livsey et al. | Feb 2014 | B2 |
8671630 | Lena et al. | Mar 2014 | B2 |
8677702 | Jenkins | Mar 2014 | B2 |
8695289 | Koch et al. | Apr 2014 | B2 |
8713858 | Xie | May 2014 | B1 |
8713860 | Railkar et al. | May 2014 | B2 |
8733038 | Kalkanoglu et al. | May 2014 | B2 |
8789321 | Ishida | Jul 2014 | B2 |
8793940 | Kalkanoglu et al. | Aug 2014 | B2 |
8793941 | Bosler et al. | Aug 2014 | B2 |
8826607 | Shiao et al. | Sep 2014 | B2 |
8835751 | Kalkanoglu et al. | Sep 2014 | B2 |
8863451 | Jenkins et al. | Oct 2014 | B2 |
8898970 | Jenkins et al. | Dec 2014 | B2 |
8925262 | Railkar et al. | Jan 2015 | B2 |
8943766 | Gombarick et al. | Feb 2015 | B2 |
8946544 | Jabos et al. | Feb 2015 | B2 |
8950128 | Kalkanoglu et al. | Feb 2015 | B2 |
8959848 | Jenkins et al. | Feb 2015 | B2 |
8966838 | Jenkins | Mar 2015 | B2 |
8966850 | Jenkins et al. | Mar 2015 | B2 |
8994224 | Mehta et al. | Mar 2015 | B2 |
9032672 | Livsey et al. | May 2015 | B2 |
9166087 | Chihlas et al. | Oct 2015 | B2 |
9169646 | Rodrigues et al. | Oct 2015 | B2 |
9170034 | Bosler et al. | Oct 2015 | B2 |
9178465 | Shiao et al. | Nov 2015 | B2 |
9202955 | Livsey et al. | Dec 2015 | B2 |
9212832 | Jenkins | Dec 2015 | B2 |
9217584 | Kalkanoglu et al. | Dec 2015 | B2 |
9270221 | Zhao | Feb 2016 | B2 |
9273885 | Rordigues et al. | Mar 2016 | B2 |
9276141 | Kalkanoglu et al. | Mar 2016 | B2 |
9331224 | Koch et al. | May 2016 | B2 |
9356174 | Duarte et al. | May 2016 | B2 |
9359014 | Yang et al. | Jun 2016 | B1 |
9528270 | Jenkins et al. | Dec 2016 | B2 |
9605432 | Robbins | Mar 2017 | B1 |
9711672 | Wang | Jul 2017 | B2 |
9755573 | Livsey et al. | Sep 2017 | B2 |
9786802 | Shiao et al. | Oct 2017 | B2 |
9831818 | West | Nov 2017 | B2 |
9912284 | Svec | Mar 2018 | B2 |
9923515 | Rodrigues et al. | Mar 2018 | B2 |
9938729 | Coon | Apr 2018 | B2 |
9991412 | Gonzalez et al. | Jun 2018 | B2 |
9998067 | Kalkanoglu et al. | Jun 2018 | B2 |
10027273 | West et al. | Jul 2018 | B2 |
10115850 | Rodrigues et al. | Oct 2018 | B2 |
10128660 | Apte et al. | Nov 2018 | B1 |
10187005 | Rodrigues et al. | Jan 2019 | B2 |
10256765 | Rodrigues et al. | Apr 2019 | B2 |
10454408 | Livsey et al. | Oct 2019 | B2 |
10530292 | Cropper et al. | Jan 2020 | B1 |
10560048 | Fisher et al. | Feb 2020 | B2 |
10563406 | Kalkanoglu et al. | Feb 2020 | B2 |
D879031 | Lance et al. | Mar 2020 | S |
10734938 | Yang et al. | Aug 2020 | B2 |
10784813 | Kalkanoglu et al. | Sep 2020 | B2 |
D904289 | Lance et al. | Dec 2020 | S |
10862420 | Nguyen et al. | Dec 2020 | B2 |
10985688 | Seery et al. | Apr 2021 | B2 |
11012026 | Kalkanoglu et al. | May 2021 | B2 |
11177639 | Nguyen et al. | Nov 2021 | B1 |
11217715 | Sharenko | Jan 2022 | B2 |
11251744 | Bunea et al. | Feb 2022 | B1 |
11258399 | Kalkanoglu et al. | Feb 2022 | B2 |
11283394 | Perkins et al. | Mar 2022 | B2 |
11444569 | Clemente | Sep 2022 | B2 |
20020053360 | Kinoshita et al. | May 2002 | A1 |
20020129849 | Heckeroth | Sep 2002 | A1 |
20030010374 | Dinwoodie | Jan 2003 | A1 |
20030101662 | Ullman | Jun 2003 | A1 |
20030132265 | Villela et al. | Jul 2003 | A1 |
20030154667 | Dinwoodie | Aug 2003 | A1 |
20030217768 | Guha | Nov 2003 | A1 |
20040000334 | Ressler | Jan 2004 | A1 |
20040187909 | Sato et al. | Sep 2004 | A1 |
20050115603 | Yoshida et al. | Jun 2005 | A1 |
20050144870 | Dinwoodie | Jul 2005 | A1 |
20060042683 | Gangemi | Mar 2006 | A1 |
20060266405 | Lenox | Nov 2006 | A1 |
20070181174 | Ressler | Aug 2007 | A1 |
20070193618 | Bressler et al. | Aug 2007 | A1 |
20070249194 | Liao | Oct 2007 | A1 |
20080000174 | Flaherty et al. | Jan 2008 | A1 |
20080000512 | Flaherty et al. | Jan 2008 | A1 |
20080006323 | Kalkanoglu et al. | Jan 2008 | A1 |
20080035140 | Placer et al. | Feb 2008 | A1 |
20080271773 | Jacobs et al. | Nov 2008 | A1 |
20080271774 | Kalkanoglu et al. | Nov 2008 | A1 |
20080289272 | Flaherty et al. | Nov 2008 | A1 |
20080302030 | Stancel et al. | Dec 2008 | A1 |
20080315061 | Placer et al. | Dec 2008 | A1 |
20090000222 | Kalkanoglu et al. | Jan 2009 | A1 |
20090019795 | Szacsvay et al. | Jan 2009 | A1 |
20090044850 | Kimberley | Feb 2009 | A1 |
20090095339 | Nightingale et al. | Apr 2009 | A1 |
20090114261 | Stancel et al. | May 2009 | A1 |
20090120484 | Nightingale et al. | May 2009 | A1 |
20090133340 | Shiao et al. | May 2009 | A1 |
20090159118 | Kalkanoglu et al. | Jun 2009 | A1 |
20090178350 | Kalkanoglu et al. | Jul 2009 | A1 |
20090229652 | Mapel et al. | Sep 2009 | A1 |
20100019580 | Croft et al. | Jan 2010 | A1 |
20100065107 | Nightingale et al. | Mar 2010 | A1 |
20100101634 | Frank et al. | Apr 2010 | A1 |
20100139184 | Williams et al. | Jun 2010 | A1 |
20100146878 | Koch et al. | Jun 2010 | A1 |
20100159221 | Kourtakis et al. | Jun 2010 | A1 |
20100313499 | Gangemi | Dec 2010 | A1 |
20100313501 | Gangemi | Dec 2010 | A1 |
20100326488 | Aue et al. | Dec 2010 | A1 |
20100326501 | Zhao et al. | Dec 2010 | A1 |
20110017278 | Kalkanoglu et al. | Jan 2011 | A1 |
20110030761 | Kalkanoglu et al. | Feb 2011 | A1 |
20110036386 | Browder | Feb 2011 | A1 |
20110036389 | Hardikar et al. | Feb 2011 | A1 |
20110048507 | Livsey et al. | Mar 2011 | A1 |
20110058337 | Han et al. | Mar 2011 | A1 |
20110061326 | Jenkins | Mar 2011 | A1 |
20110100436 | Cleereman et al. | May 2011 | A1 |
20110104488 | Muessig et al. | May 2011 | A1 |
20110132427 | Kalkanoglu et al. | Jun 2011 | A1 |
20110154750 | Welter et al. | Jun 2011 | A1 |
20110239555 | Cook et al. | Oct 2011 | A1 |
20110302859 | Crasnianski | Dec 2011 | A1 |
20120060902 | Drake | Mar 2012 | A1 |
20120066984 | Thompson | Mar 2012 | A1 |
20120137600 | Jenkins | Jun 2012 | A1 |
20120176077 | Oh et al. | Jul 2012 | A1 |
20120186630 | Jenkins et al. | Jul 2012 | A1 |
20120212065 | Cheng et al. | Aug 2012 | A1 |
20120233940 | Perkins et al. | Sep 2012 | A1 |
20120240490 | Gangemi | Sep 2012 | A1 |
20120260977 | Stancel | Oct 2012 | A1 |
20120266942 | Komatsu et al. | Oct 2012 | A1 |
20120279150 | Pislkak et al. | Nov 2012 | A1 |
20130008499 | Verger et al. | Jan 2013 | A1 |
20130014455 | Grieco | Jan 2013 | A1 |
20130111831 | Jenkins et al. | May 2013 | A1 |
20130125482 | Kalkanoglu et al. | May 2013 | A1 |
20130180575 | Jackrel et al. | Jul 2013 | A1 |
20130193769 | Mehta et al. | Aug 2013 | A1 |
20130247988 | Reese et al. | Sep 2013 | A1 |
20130284267 | Plug et al. | Oct 2013 | A1 |
20130306137 | Ko | Nov 2013 | A1 |
20140000708 | Kennihan et al. | Jan 2014 | A1 |
20140000709 | Langmaid et al. | Jan 2014 | A1 |
20140090697 | Rodrigues et al. | Apr 2014 | A1 |
20140102518 | Chihlas | Apr 2014 | A1 |
20140150843 | Pearce et al. | Jun 2014 | A1 |
20140173997 | Jenkins | Jun 2014 | A1 |
20140179220 | Railkar et al. | Jun 2014 | A1 |
20140254776 | O'Connor et al. | Sep 2014 | A1 |
20140299179 | West et al. | Oct 2014 | A1 |
20140305050 | Schulze et al. | Oct 2014 | A1 |
20140311556 | Feng et al. | Oct 2014 | A1 |
20140338272 | Shiao et al. | Nov 2014 | A1 |
20140352760 | Haynes et al. | Dec 2014 | A1 |
20140366464 | Rodrigues | Dec 2014 | A1 |
20150089895 | Leitch | Apr 2015 | A1 |
20150340516 | Kim et al. | Nov 2015 | A1 |
20150349173 | Morad et al. | Dec 2015 | A1 |
20160105144 | Haynes et al. | Apr 2016 | A1 |
20160254776 | Rodrigues et al. | Sep 2016 | A1 |
20160276508 | Huang et al. | Sep 2016 | A1 |
20160359451 | Mao et al. | Dec 2016 | A1 |
20170126171 | Fisher | May 2017 | A1 |
20170159292 | Chihlas et al. | Jun 2017 | A1 |
20170163206 | Rodrigues | Jun 2017 | A1 |
20170179726 | Garrity et al. | Jun 2017 | A1 |
20170331415 | Koppi et al. | Nov 2017 | A1 |
20180094438 | Wu et al. | Apr 2018 | A1 |
20180097472 | Anderson et al. | Apr 2018 | A1 |
20180254738 | Yang et al. | Sep 2018 | A1 |
20180351502 | Almy et al. | Dec 2018 | A1 |
20190030867 | Sun et al. | Jan 2019 | A1 |
20190081436 | Onodi et al. | Mar 2019 | A1 |
20190089293 | Almy | Mar 2019 | A1 |
20190273462 | Almy et al. | Sep 2019 | A1 |
20190273463 | Seery et al. | Sep 2019 | A1 |
20190305717 | Allen et al. | Oct 2019 | A1 |
20200109320 | Jiang | Apr 2020 | A1 |
20200144958 | Rodrigues et al. | May 2020 | A1 |
20200220819 | Vu et al. | Jul 2020 | A1 |
20200224419 | Boss et al. | Jul 2020 | A1 |
20200343397 | Hem-Jensen | Oct 2020 | A1 |
20210115223 | Bonekamp et al. | Apr 2021 | A1 |
20210159353 | Li et al. | May 2021 | A1 |
20210159844 | Sirski | May 2021 | A1 |
Number | Date | Country |
---|---|---|
2829440 | May 2019 | CA |
700095 | Jun 2010 | CH |
202797032 | Mar 2013 | CN |
1958248 | Nov 1971 | DE |
1837162 | Sep 2007 | EP |
2196594 | Jun 2010 | EP |
1774372 | Jul 2011 | EP |
2784241 | Oct 2014 | EP |
2001-098703 | Oct 2002 | JP |
2017-027735 | Feb 2017 | JP |
2011049944 | Apr 2011 | WO |
2015133632 | Sep 2015 | WO |
2019201416 | Oct 2019 | WO |
Entry |
---|
Sunflare, Procducts: “Sunflare Develops Prototype for New Residential Solar Shingles”; 2019 <<sunflaresolar.com/news/sunflare-develops-prototype-for-new-residential-solar-shingles>> retrieved Feb. 2, 2021. |
RGS Energy, 3.5kW Powerhouse 3.0 system installed in an afternoon; Jun. 7, 2019 <<facebook.com/RGSEnergy/>> retrieved Feb. 2, 2021. |
Tesla, Solar Roof <<tesla.com/solarroof>> retrieved Feb. 2, 2021. |
“Types of Roofing Underlayment”, Owens Corning Roofing; <<https://www.owenscorning.com/en-us/roofing/tools/how-roofing-underlayment-helps-protect-your-home>> retrieved Nov. 1, 2021. |
Number | Date | Country | |
---|---|---|---|
20230074778 A1 | Mar 2023 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17501606 | Oct 2021 | US |
Child | 17941934 | US | |
Parent | 63091428 | Oct 2020 | US |
Child | 17501606 | US |