This application concerns a mounting arrangement allowing one or more wheels to be added to a motor vehicle axle for achieving improved traction and support for the vehicle weight when being driven on unpaved surfaces.
It has long been realized that adding one or more auxiliary wheels to at least two vehicle axles will greatly improve mobility particularly when driving off road.
Various adapters and extensions have been devised to add such auxiliary wheels, but none of these have provided a practical and conveniently installed mounting of such wheels.
Any mounting must provide adequate support for the auxiliary wheel and should be convenient to install in the field when extra traction and support is needed.
Some prior mounting arrangements are complex and require special wheel rims, which add substantially to the expense of adding auxiliary wheels.
In other mountings, the mounted wheels are spaced too close together allowing mud to become packed into the gap between the wheels, which must be removed periodically.
Also, mountings for auxiliary wheels must not have any gaps or clearances between the moving components because the presence of clearances may lead to loosening of the components over time. At the same time, some clearances are necessary in order to be able to assemble the components and connect them to an existing axle.
The components themselves must also be sufficiently sturdy to adequately support the auxiliary wheels, but also should not be too heavy such as to make the vehicle too heavy and thus affect the rate of fuel consumption of the vehicle.
It is an object of the present invention to provide a mounting arrangement for adding auxiliary wheels to trucks or other motor vehicles, which also provides adequate support for any auxiliary wheels.
It is an additional object to provide such mounting arrangement which allows the use of standard wheel rims and is easy and quick to install when needed.
It is a further object to provide such mounting arrangement for adding auxiliary wheels which eliminates any clearances which could cause looseness over time while still allowing assembly of the wheel to the mounting components.
The above recited objects and other objects which will understood by those skilled in the art are achieved by a mounting arrangement including three generally cylindrical spacers having interfit and abutting ends fixed together.
A first or inner spacer closest to the axle has a series of counterbored holes arranged about its perimeter opening into an outer end of the inner spacer, each hole aligned smaller diameter hole opening into the inside end of the inner spacer and a series of wheel mounting studs projecting from an existing member of a brake assembly. Lug nuts are inserted into the larger diameter holes and threaded onto the lug studs. The inner spacer has a circular shoulder projecting through a central wheel rim opening, with a lip extending around the rim opening compressed by tightening the lug nuts against the brake assembly member to be deflected inwardly into tight engagement with the outside diameter of a shoulder on the inner spacer to eliminate any clearances between the rim and the inner spacer.
A second or intermediate spacer has an inboard end having a shoulder projecting into an inner diameter of a central opening extending into the outside end of the inner spacer with the shoulder abutting an outside end of the inner spacer, and held thereagainst as with an annular set of bolts located around the axis of the inner spacer an intermediate spacer having a shoulder received into a stepped diameter or counterbored hole in the outboard end of the intermediate spacer and extending out into an aligned set of threaded axial holes in the outside end of the inner spacer so that the inner and intermediate spacers are held together abutted end to end.
A third or outer cylindrical spacer is held with its inner end in abutment with the outside end of the intermediate spacer. A counterbored opening is recessed into the inner side of the outer spacer which slidably receives a shoulder projecting from the outside end of the intermediate spacer.
The inside end of the outer spacer abuts the outside end of the intermediate spacer and tightly held there against as by an annular series of bolts received into corresponding set of counterbored holes extending into the outside end of the outer spacer and received into corresponding threaded holes in the outside end of the intermediate spacer.
A series of interspaced stud bolts are received in a corresponding set of axial holes extending in to the inner end of the outer spacer and project out from the outer end of the outer spacer.
A rim of an auxiliary wheel to be installed has a large central opening defined by an inwardly angled lip is received onto an outer reduced diameter shoulder at the end of the outer spacer. The wheel rim has a set of holes into which is received the outer spacer stud bolts. Lug nuts are threaded onto the stud bolts and compress the wheel rim lip against a shoulder formed by the reduced diameter shoulder on the outer spacer deforming the lip inwardly and against the outside diameter of the reduced diameter shoulder to eliminate any clearance spaces.
In the following detailed description, certain specific terminology will be employed for the sake of clarity and a particular embodiment described in accordance with the requirements of 35 USC 112, but it is to be understood that the same is not intended to be limiting and should not be so construed inasmuch as the invention is capable of taking many forms and variations within the scope of the appended claims.
Referring to the Drawings,
Each auxiliary wheel 16 is located spaced away from the preexisting original equipment wheel 12 by the mounting arrangement 14.
The wheels 12, 16 are connected by attaching the standard rims 18, 20 of the wheels 12, 16 to an end of a respective mounting arrangement 14 as described in detail hereinafter.
Referring to
The inner spacer 22 is fixedly attached to an existing brake assembly member 28 by a set of stud bolts 30 which each pass through one of the holes 32 arranged around the wheel rim 20 (
As best seen in
The standard wheel rim 20 has an angled lip 42 formed around the opening 38, which is compressed by tightening of the lug nuts 36. This tightening of the lug nuts 36 forces the lip 42 to be deflected inwardly to engage the shoulder 40 (
The second or intermediate spacer 24 is formed with a reduced diameter right side shoulder 44 which is slidably received in the inside diameter of a left side counterbore 46 in the inner spacer 22 (
The right end face 48 of the intermediate spacer 24 is held in abutment against the outer end face 50 of the inner spacer 22 by a circular array of long bolts 52 each received and passing through holes 54 extending axially completely through the intermediate spacer 24, with the threaded end of each bolt 52 advanced into a threaded hole 56 extending into the outer side of the inner spacer 22. The head 53 of each bolt 52 seats at the bottom of a counterbore 54A of an associated hole 54.
The outer spacer 26 has a recess 58 receiving therein a left side reduced diameter shoulder 60 with a sliding fit therebetween. Obviously these locations of the recess 58 and shoulder 60 could be reversed.
A right end face 62 of outer spacer 26 is held in abutment against a left end face 64 of the intermediate spacer 24 by a circular array of bolts 66 received in a respective one of holes 68. A counterbore 68A of each hole 68 accommodates the head of the bolt 66 received therein with sufficient clearance so as to allow tightening with a socket wrench (not shown).
A circular array of stud bolts 70 are installed to extend through holes 72 in outer spacer 26 with counterbores 72A accommodating the heads thereof.
The stud bolts 70 project through the left end of the outer spacer 26 and through mounting holes 74 of a conventional rim 76 of the auxiliary wheel 16.
Lug nuts 78 installed on the lug bolts 70 draw the rim 76 tightly against a left end 80 of outer spacer 26, as best seen in
Outer spacer 26 has a reduced diameter shoulder 82 which slidably passes into the center hole 84 in the wheel rim 76.
The lug nuts 78 when tightened compress an angled lip 86 formed into the perimeter of the opening 84 (
The perimeter of the opening 84 has a radial clearance with shoulder 82 to allow assembly but upon tightening of the lug nuts 78 and inward deflection of the lip 86 to engage the shoulder 82, all clearance therebetween is eliminated so that a tight fit is produced. This insures that no looseness develops over time, while assembly and disassembly of the wheel 12 is facilitated by the clearances which exist prior to tightening of the lug nuts 70.
The interfit spacers 22, 24, 26 when bolted together end to end provide a very sturdy cantilevered support for the auxiliary wheel 16 forming a unitary structure which will not loosen over time.
The thick walls of the spacers allow the use of aluminum in their construction to lighten their weight to enable easy handling when being installed and to reduce the rotating mass.
Standard wheel rims are used to lower the cost of the installation while the mounting ensures adequate spacing between the original and auxiliary wheels to avoid packing the space with dirt and other debris.
The deflection of the wheel rim lips insures a tight fit onto the mating spacers while allowing ready assembly of the wheel rims to the spacer assembly to thereby provides achievement of the objects of the invention recited above by the arrangement described.
This application claims the benefit of U.S. provisional patent application No. 62/146,529 filed on Apr. 13, 2015.
Number | Name | Date | Kind |
---|---|---|---|
2635012 | Rappaport | Apr 1953 | A |
3039825 | Clark | Jun 1962 | A |
3664709 | Barr'e | May 1972 | A |
3790218 | Johns | Feb 1974 | A |
3840273 | Johns | Oct 1974 | A |
3990747 | Long | Nov 1976 | A |
4070066 | Reppert et al. | Jan 1978 | A |
4135765 | Hardwicke | Jan 1979 | A |
4164358 | Entrup | Aug 1979 | A |
4214792 | Hardwicke | Jul 1980 | A |
4261621 | Fox | Apr 1981 | A |
4333688 | Lemmon | Jun 1982 | A |
4396232 | Fox | Aug 1983 | A |
4473258 | Fox | Sep 1984 | A |
4585276 | Tirheimer | Apr 1986 | A |
4718732 | Osborne | Jan 1988 | A |
4776640 | Rezza | Oct 1988 | A |
4787679 | Arnold | Nov 1988 | A |
4902074 | DeRegnaucourt et al. | Feb 1990 | A |
5100205 | Hardwicke | Mar 1992 | A |
5785391 | Parry | Jul 1998 | A |
6250722 | Radke | Jun 2001 | B1 |
6568764 | McNeil et al. | May 2003 | B2 |
6848526 | Burt et al. | Feb 2005 | B2 |
7040713 | Rudolf et al. | May 2006 | B2 |
7413259 | Verdun et al. | Aug 2008 | B2 |
8690265 | Noblanc et al. | Apr 2014 | B2 |
20020190570 | Gorges | Dec 2002 | A1 |
20130234496 | Gengerke | Sep 2013 | A1 |
20150123453 | Benoit, Jr. | May 2015 | A1 |
Number | Date | Country | |
---|---|---|---|
20160297237 A1 | Oct 2016 | US |
Number | Date | Country | |
---|---|---|---|
62146529 | Apr 2015 | US |