1. Field of Invention
The present invention relates generally to the field of toys. More specifically, the present invention is related to a toy including a squeaker and method of mounting the squeaker into the toy.
2. Discussion of Prior Art
Generally, inserting a noise producing element into a Figure or ball toy is well known. U.S. Pat. Nos. 754,148, 1,187,838, 1,668,785, RE29050, 3,075,317 and 3,702,038 show such devices.
As far as mounting arrangements go, in the case of vinyl material, as shown in
The prior art fails to provide squeakers utilizing a separate holder for gluing to a rubber toy. Also, none of the prior art squeakers have the present invention method for complying with child safety standards.
Whatever the precise merits, features, and advantages of the above cited references, none of them achieves or fulfills the purposes of the present invention.
The present invention includes a mounting arrangement for a squeaker into a rubber ball toy. The squeaker mechanism is trapped within a polystyrene or rubber sleeve to form a noise producing element. The sleeve has a recessed area that tightly mates with an opening in the rubber toy and also includes a bonding surface to secure the sleeve to the toy.
In an alternative embodiment, the sleeve also has fin members that extend orthogonally from a distal end of the sleeve. The total width of the sleeve and the associated fin members is such that it complies with consumer product safety requirements. The fin members make the sleeve substantially larger than the opening in the toy such that it is inherent in the structure that the sleeve and squeaker will fall into the toy if the bond holding the sleeve to the toy happens to fail.
In yet another alternative embodiment, a shroud for enclosing a squeaker has a generally cylindrical but tapered shape and includes two flanges (e.g., an interior flange and an exterior flange) at a proximate end of the shroud. A bonding surface between the two flanges is adapted to fit into an opening in a hollow toy. The interior flange has a diameter that is larger than both the exterior flange and the diameter of the opening in the toy. The structure is thus adapted to retain the shroud enclosing the squeaker within the hollow toy even if the shroud becomes loose from the opening in the toy.
a illustrates a prior art common fitting inserted into an opening molded into the vinyl;
b illustrates a prior art method of inserting squeaker into a common fitting;
c illustrates a prior art method of inserting squeaker into a rough through-hole;
a illustrates a typical squeaker mechanism;
b illustrates a rubber sleeve to hold squeaker mechanism;
c illustrates squeaker mechanism retained in a sleeve and the rubber sleeve including a gluing surface;
a illustrates a squeaker mechanism retained in a polystyrene sleeve;
b illustrates a sleeve composed of two half shells and extending fins;
c illustrates a sleeve including a gluing surface;
a illustrates an isometric view of an additional embodiment of a shroud for protecting a squeaker mechanism;
b illustrates an open isometric view of the shroud containing a squeaker mechanism of
c illustrates an exploded isometric view of the shroud containing a squeaker mechanism of
d illustrates a close-up open isometric view of the shroud containing a squeaker mechanism of
a illustrates a front plan view of one half of the sleeve of
b illustrates a side plan view of one half of the sleeve of
c illustrates a top plan view of one half of the sleeve of
While this invention is illustrated and described in a preferred embodiment, the device may be produced in many different configurations, forms and materials. There is depicted in the drawings, and will herein be described in detail, a preferred embodiment of the invention, with the understanding that the present disclosure is to be considered as an exemplification of the principles of the invention and the associated functional specifications for its construction and is not intended to limit the invention to the embodiment illustrated. Those skilled in the art will envision many other possible variations within the scope of the present invention.
a shows a typical squeaker mechanism 202. According to a preferred embodiment,
Referring now to
a, 4b, 4c illustrate a second embodiment of the present invention.
In order to pass the Consumer Product Safety Commission standard for small children, the sleeve size of the present invention must not fall into a 1-¼ inch aperture. Therefore to meet the safety ratings, preferably by a ½″ diameter, sleeve 404 also includes integral extended members or fins 410 which are orthogonal to squeaker 402 to expand the total width of the sleeve. Please note that fins 410, in an alternative embodiment, may follow the curvature of the inner surface of the small toy.
Referring to
As shown in
Turning now to
The embodiment of the present invention that may generally referred to as a noise producing assembly 600 is depicted in
Referring to
The shroud 602 may also include an interior flange 616 and an exterior flange 618 at the proximate end 610 that together are adapted to hold the noise producing assembly 600 in the opening of the toy, thereby supporting the bonding method. In some embodiments, the toy may include a countersunk opening (not shown) that is adapted to receive the exterior flange 618 so that the exterior flange 618 sits flush with the outer surface of the toy. The interior flange 616 may have a diameter the size of the widest part of the shroud 602 and be substantially larger than both the exterior flange 618 and the opening in the toy. For example, the diameter of the interior flange 616 may be approximately 1.3 to 5 times larger than the opening in the toy. Other dimensions are possible. The diameter of the exterior flange 618 may be larger than the opening in the toy but smaller than the interior flange 616. This structure insures that even if the bonding method fails, the noise producing assembly 600 can only fall into the toy and cannot exit the toy. Further, even if the opening in the toy is distorted and/or enlarged enough to let the flanges slip through, the noise producing assembly 600 will tend to be more likely to fall into the toy than out of the toy due to the relative sizes of the flanges. Thus, the structure provides an inherent safety feature to the present invention that is operative to prevent an animal from working the noise producing assembly 600 out of the toy through chewing, biting, or otherwise distorting the toy. This safety feature can help prevent choking or other injuries to an animal playing with the toy, because even if the noise producing assembly 600 does become loose, it will remain trapped within the toy.
As indicated above, the squeaker mechanism 604 may be completely contained in the shroud 602. Completely encapsulating the squeaker mechanism 604 in the shroud 602 provides additionally safety features to the present invention. The entire length of the squeaker mechanism 604 may be bonded to the shroud 602 to further prevent removal of the squeaker mechanism 604 from the toy. Referring specifically to
A system and method has been shown in the above embodiments for the effective implementation of mounting arrangement for squeakers. While various preferred embodiments have been shown and described, it will be understood that there is no intent to limit the invention by such disclosure, but rather, it is intended to cover all modifications and alternate constructions falling within the spirit and scope of the invention, as defined in the appended claims. For example, the present invention should not be limited by size, materials, or specific manufacturing techniques.
The present application is a continuation-in-part of and claims priority to U.S. Ser. No. 10/889,962 filed on Jul. 13, 2004, which is hereby incorporated in its entirety for all purposes.
Number | Date | Country | |
---|---|---|---|
Parent | 10889962 | Jul 2004 | US |
Child | 11312244 | Dec 2005 | US |