The present invention deals with brackets and other similarly constructed mounting devices utilized for detachably securing of cylindrical tanks such as emergency breathing apparatus tanks in position within emergency vehicles. It is important that such tank be fully and securely held therein but also be available for quick and easier removal by emergency personnel once the vehicle reaches the location of the fire or other emergency. Many devices have been designed for detachably securing such tanks including various clamping mechanisms and most are utilized for storing the cylindrical tank in an inverted position since this is the tank position when attached to the torso of an emergency worker. The present invention provides a unique means for minimizing extremely rapid or instantaneous movement of the bracket from the clamping position to the releasing position which would be experienced in an accident by the emergency vehicle or an unusually rapid movement. Such cylindrical tanks are quite heavy and the uncontrolled release of such a heavy piece of equipment during an accident or other rapidly decelerating incident could easily injure emergency personnel in the immediate area.
Many prior art devices have been utilized for the purpose of retaining cylindrical tanks in an inverted position which are designed to hold them securely while allowing rapid release when needed. Examples of such construction are shown in U.S. Pat. No. 2,431,698 patented Dec. 2, 1947 to H. Lombard on a “Removable Mounting Installation” and U.S. Pat. No. 2,615,238 patented Oct. 28, 1952 to W. Highwood on a “Tank Clamp Support Holder”; and U.S. Pat. No. 3,194,529 patented Jul. 13, 1965 to G. R. Brock on a “Bracket For Holding Fire Extinguishers”; and U.S. Pat. No. 3,224,644 patented Dec. 21, 11965 to W. J. Davis on a “Dispenser”; and U.S. Pat. No. 3,490,727 patented Jan. 20, 1970 to H. Q. Miller on a “Holding Apparatus For Loads Adapted To Be Strapped To The Back Of Humans”; and U.S. Pat. No. 3,547,391 patented Dec. 15, 1970 to D. E. Johnson on a “Quick Release Support For Rescue Breathing Apparatus”; and U.S. Pat. No. 3,565,384 patented Feb. 23, 1971 to L. A. Lockwood and assigned to Bernzomatic Corporation on a “Bracket For Holding And Clamping Gas Cylinder Type Fire Extinguisher Tanks”; and U.S. Pat. No. 3,603,550 patented Sep. 7, 1973 to C. D. Byrd and assigned to Lacy J. Miller Machine Company, Inc. on a “Quick Release Support”; and U.S. Pat. No. 3,667,714 patented Jun. 6, 1972 to T. Ziaylek, Jr. on a “Tank Support”; and U.S. Pat. No. 3,780,972 patented Dec. 25, 1973 to J. C. Brodersen on a “Mounting Apparatus For Gas Containers”; and U.S. Pat. No. 3,823,907 patented Jul. 16, 1974 to T. Ziaylek, Jr. on a “Positive Locking Device”; and U.S. Pat. No. 3,971,591 patented Jul. 27, 1976 to J. Ziaylek and assigned to Ziamatic Corporation on a “Quic-Seat”; and U.S. Pat. No. 4,213,592 patented Jul. 22, 1980 to D. J. Lingenfelser and assigned to Caterpillar Tractor Co. on a “Bracket Assembly For Mounting Fire Extinguishers Thereon”; and U.S. Pat. No. 4,304,383 patented Dec. 8, 1981 to P. 0. Huston on a “Bracket For Holding A Tank”; and U.S. Pat. No. 4,379,541 patented Apr. 12, 1983 to D. M. Harkness on a “Holder For A Container”; and U.S. Pat. No. 4,505,448 patented Mar. 19, 1985 to C. P. Massie on a “Bracket For Fire Extinguishers”; and U.S. Pat. No. 4,586,687 patented May 6, 1986 to T. Ziaylek, Jr. on an “Air Tank Support Of The Quick Release Type”; and U.S. Pat. No. 4,848,714 patented Jul. 18, 1989 to T. Ziaylek, Jr. et al on a “Mounting Plate With Rollers”; and U.S. Pat. No. 5,213,392 patented May 25, 1993 to J. M. Bostrom et al on a “Seat Construction”; and U.S. Pat. No. 5,314,233 patented May 24, 1994 to J. M. Bostrom et al on a “Seat Construction Having A Mechanism For Storing A Tank”; and U.S. Pat. No. 5,681,080 patented Oct. 28, 1997 to G. M. Pond et al and assigned to Seats, Inc. on a “Vehicle Seat For Person Wearing Self-Contained Breathing Apparatus”; and U.S. Pat. No. 5,803,544 patented Sep. 8, 1998 to W. R. Block et al and assigned to H. O. Bostrom Company, Inc. on a “Seat Construction With Removable Side Cushions”; and U.S. Pat. No. 5,934,749 to G. M. Pond and assigned to Seats, Inc. on a “Vehicle Seat With Removable Bolsters And Pivoting Headrest Members”; and U.S. Pat. No. 6,702,242 patented Mar. 9, 2004 to T. Ziaylek, Jr. et al on a “Releasable Tank Holding Assembly Securable To A Hollow Seat Back To Facilitate Detachable Securement Of A Tank Thereinto”; and U.S. Pat. No. 6,769,659 patented Aug. 3, 2004 to G. A. Martello on a “Bottle Bracket”; and U.S. Pat. No. 6,830,226 patented Dec. 14, 2004 to B. J. Field et al and assigned to Pacific Safety Products Inc. on a “Quick Release Supporting Apparatus For A Canister”; and U.S. Pat. No. 7,975,978 patented Jul. 12, 2011 to M. P. Ziaylek on a “Positively Engaging Mounting Apparatus For Securely And Detachably Retaining Of A Cylindrical Tank”; and U.S. Design Pat. No. D222,527 patented Nov. 2, 1971 to T. Ziaylek, Jr. on a “Bracket For Use With Lifesaving Equipment”; and U.S. Design Pat. No. D237,357 patented Oct. 28, 1975 to T. Ziaylek, Jr. and assigned to Ziamatic Corporation on a “Tank Support Bracket For Lifesaving Equipment”; U.S. Design Pat. No. D245,929 patented Sep. 27, 1977 to R. J. Montambo and assigned to The Ansul Company on a “Fire Extinguishing Bracket”; and U.S. Design Pat. No. D264,935 patented Jun. 15, 1982 to T. Ziaylek, Jr. and assigned to Ziamatic Corporation on a “Combined Support And Display Bracket For A Self-Contained Breathing Apparatus”; and U.S. Design Pat. No. D265,287 patented Jul. 6, 1982 to T. Ziaylek, Jr. on a “Support Bracket For Biomarine Breathing Apparatus”; and U.S. Design Pat. No. D267,227 patented Dec. 14, 1982 to T. Ziaylek, Jr. and assigned to Ziamatic Corporation on a “Support Bracket For A Gas Cylinder”; and U.S. Design Pat. No. D298,704 patented Nov. 29, 1988 to T. Ziaylek, Jr. on a “Seat For Use Primarily In Emergency Vehicles”; and U.S. Design Pat. No. 1) 303,738 patented Oct. 3, 1989 to T. Ziaylek, Jr. on a “Rotatable Cylinder Holder”; and U.S. Design Pat. No. D314,325 patented Feb. 5, 1991 to T. Ziaylek, Jr. et al on a “Clamping Set Of Bracket Arms For Supporting Tubular Objects”; and U.S. Design Pat. No. D319,778 patented T. Ziaylek, Jr. on a “Vertical Support Brace Bracket Panel For Holding Tubular Objects”; and U.S. Design Pat. No. D347,735 patented Jun. 14, 1994 to T. Ziaylek, jr. et al on a “Quick Release Support Tank Bracket”; and U.S. Design Pat. No. 1) 390,367 patented Feb. 10, 1998 to R. F. Demski et al and assigned to Seats, Inc. and Pierce Manufacturing Inc. on a “Vehicle Seat”; and U.S. Design Pat. No. D394,381 patented May 19, 1998 to T. Ziaylek, Jr. et al on a “Tank Bracket”.
In at least one embodiment, the present invention provides a tank mounting assembly which facilitates quick release of a tank therefrom and allows the tank to be positioned in the tank holding zone by merely placing the head of the tank in contact with the base of the bracket and rotating the upwardly facing bottom portion of the tank into the holding zone.
In at least one embodiment, the present invention provides a tank mounting assembly for holding a cylindrical tank inverted which facilitates quick release and includes one or more assemblies for limiting rapid movement of the clamping member from the clamping position to the releasing position.
In at least one embodiment, the present invention provides a tank mounting assembly for holding a cylindrical tank in an inverted position which facilitates quick release thereof and yet firmly holds the tank in place to prevent injury to the wearer which could result from a motor vehicle accident of an emergency vehicle by limiting movement of the clamping member in the direction from the locking position to the unlocking position by the inclusion of a mechanical lock-out mechanism.
In at least one embodiment, the present invention provides a tank mounting assembly for positively engaging an inverted tank which facilitates providing quick access thereto and is particularly usable in securing an air tank to the rear portion of the seat in which persons, such as emergency workers, can be seated.
In at least one embodiment, the present invention provides a tank mounting assembly for positively engaging an inverted tank and facilitating quick release thereof which allows rapid manual release of the tank from the seat and the mounting assembly while preventing instantaneous release of the tank by the mounting assembly.
In at least one embodiment, the present invention provides a tank mounting assembly which engages the inverted tank securely and which also facilitates quick release thereof only in a safe and secure slower manner.
The accompanying drawings, which are incorporated herein and constitute part of this specification, illustrate the presently preferred embodiments of the invention, and, together with the general description given above and the detailed description given below, serve to explain the features of the invention. In the drawings:
In the drawings, like numerals indicate like elements throughout. Certain terminology is used herein for convenience only and is not to be taken as a limitation on the present invention. The following describes preferred embodiments of the present invention. However, it should be understood, based on this disclosure, that the invention is not limited by the preferred embodiments described herein.
Referring to
The mounting assembly 20 includes a backing plate 11 which is generally a vertically extending member and which can be easily attached to a seatback or any other environmental structure within an emergency or other vehicle for the purpose of facilitating mounting of the cylindrical tank 10 therewithin. The backing plate 11 often define a plurality of apertures extending therethrough to facilitate securement with threaded fasteners such as screws or bolts with respect to environmental structure.
A foot member or foot plate 14 is secured to the bottom portion of the backing plate 11 and is adapted to support the tank head 9 of cylindrical tank 10 in an inverted position. Foot plate 14 is, preferably, defined in the shape of a foot cup 16 facing upwardly to facilitate receiving of the cylindrical tank head 9 therewithin. Guiding of movement of the cylindrical tank head 9 into the foot cup 16 is achieved by the positioning of a foot guiding plate 18 at an intermediate location within the foot cup 16 and spatially disposed from the backing plate 11. The foot cup 16 preferably includes a foot front stop 17 which is spaced from the foot guiding plate 18 by a distance approximately equal to the size of the cylindrical tank head 9. In this manner, as the tank 10 is moved into the tank receiving zone 16, the cylindrical tank head 9 comes into abutment with the foot guiding plate 18. As the tank 10 moves into the tank receiving zone 16, the foot guiding plate 18 guides the tank head 9 into the location between the foot guiding plate 18 and the front foot stop 17 of foot cup 16 due to the inclined orientation of the outer facing surface of the foot guiding plate 18. This apparatus significantly facilitates the repeated placement of a cylindrical tank head 9 in abutment with the present mounting assembly 20 when securing a cylindrical tank 10 oriented in an inverted position within the tank receiving zone 16.
A clamping assembly 22 extends from the backing plate 11 at a position significantly higher or above the location of the foot plate 14. In this manner, a tank receiving zone 16 extends longitudinally vertically along the vertically extending backing plate 11 between the clamping assembly 22 and the foot plate 14 therebelow. This tank receiving zone 16 as so defined facilitates the mounting of the cylindrical tank 10 in an inverted orientation with the cylinder tank head 9 positioned in abutment with the foot plate 14 and with the body portion 8 of the tank 10 extending upwardly along the backing plate 11, and generally parallel with respect thereto, to a location wherein positioning of a clamping member 30 of the clamping assembly 22 in a clamping position facilitates maintaining of the tank 10 in the inverted orientation. As described in more detail hereinafter, the clamping member 30 is movable between the clamping position illustrated in
The clamping assembly 22, preferably, is mounted with respect to the backing plate 11 in an orientation extending general perpendicularly outwardly therefrom. The clamping assembly 22 includes a bracket 21 having a back plate 23 with opposed side plates 25 extending therefrom. Preferably, the back plate 23 extends generally parallel with respect to the plane of the backing plate 11 at a location thereabove and the side plates 25 extend outwardly from the back plate 23. With this configuration, the bracket 21 has a generally C-shaped configuration which receives the body portion 8 of cylindrical tank 10 therein.
The clamping member 30 also has a generally C-shaped configuration with an arcuate central portion 32 extending between opposed arms 34 and 36. Each arm 34, 36 is pivotally attached to a respective side plate 25 via a pivot pin 27. The clamping member 30 is pivotally movable between the clamping position and the releasing position. In the clamping position, the cylindrical tank 10, including the tank head 9 and the tank body 8, are fixedly secured within the tank receiving zone 16. Movement of the clamping member 30 toward the releasing position releases the body 8 and head 9 of the cylindrical tank 10 from the tank receiving zone 16 and allows it to be released from the bracket assembly and utilized normally at the location of an emergency situation where emergency personnel would often need a portable supply of oxygen.
A return biasing means 28, illustrated as a flexibly resilient wire coil spring, is wound about one of the pivot pins 27 and is secured at both ends relative to the bracket 21. The wire coil spring engages the pivot pin 27 and biases the pivot pin 27, and thereby the clamping member 30, toward the clamping position with a moderate continuously exerted force. While a wire coil spring engaged with the pivot pin 27 is illustrated, other biasing assemblies may be utilized, for example, a coil spring extending between the bracket 31 and the clamping member 30. A stop 26 is positioned extending through one of the side plates 35 and engages the respective arm 34 and prevents over rotation of the clamping member 30.
Movement of the clamping member 30 from the clamping position to the releasing position to facilitate release of the tank 10 from the mounting assembly 20 is most commonly achieved by manually overpowering the force exerted by the return biasing means 28 by lifting the front portion of the clamping member 30 and causing it to pivot toward the releasing position. Preferably, the clamping member 30 is also configured to allow for automatic movement of clamping member 30 to the releasing position when the wearer of the tank 10 gets up from the seat they are in. To facilitate such, the clamping member 30 has an internal slope 39 (see
While it is convenient for the mounting assembly 20 to easily release the tank 10 when the wearer intentionally exits the seat, the mounting assembly 20 is configured such that the tank 10 not be released do to an unintended lateral force, for example, an inertia force caused by a sudden, sharp change of speed of the vehicle. To achieve such, the mounting assembly 20 of the present embodiment includes a mechanical lock-out mechanism 50 which engages a portion of the clamping mechanism 30 and prevents pivoting thereof in response to a sudden high force.
The exemplary mechanical lock-out mechanism 50 of the present embodiment is a pivoting mechanical lock-out mechanism. The pivoting mechanical lock-out mechanism 50 is responsive to sensing large magnitude forces which are normally directed laterally toward the front of a vehicle during rapid vehicle deceleration to prevent movement of the clamping member 30 to the releasing position which would allow unlocking of the tank 10 from the mounting assembly 20. The pivoting mechanical lock-out mechanism 50 is movable between a pivoting lock-out closed position as illustrated in
To achieve the mechanical locking, the pivoting mechanical lock-out mechanism 50 preferably includes a pivoting lock-out bar 52 pivotally movably secured with respect to bracket 21, such as, by being pivotally secured at pivot pin 53 to an extension member 54 which is secured with respect to one of the side plates 25. The free end of the lock-out bar 52 defines a blocking shoulder 58 configured to engage a contact plate 38 on the arm 34 of the clamping member 30 when the lock-out bar 52 is in the pivoting lock-out closed positioned, as illustrated in
A spring 56 or similar biasing member is positioned between the pivot pin 53 and a connector 55 on the lock-out bar 52 and biases the lock-out bar 52 toward the pivoting lock-out opened position as illustrated in
The pivoting mechanical lock-out bar 52 is responsive to extremely rapid or instantaneous deceleration of the vehicle within which the mounting bracket 20 is secured to move instantly to the pivoting lock-out closed position. That is, upon a sudden deceleration, a force will be applied to the lock-out bar 52 in the direction of arrow A in
To maintain the lock-out bar 52 in the pivoting lock-out closed position, a slidable wedge 60 is supported on the side plate 25. The wedge 60 includes a slot 62 into which studs 62 extending from the side plate 25 are positioned such that the wedge 60 is able to move vertically over the range of the slot 62. The wedge 60 has an inclined face 64 which is directed toward the lock-out bar 52. When the lock-out bar 52 is biased toward the pivoting lock-out open position, a portion of the bar 52 is below a tip of the wedge 60 and the wedge 60 is maintained in an upper position as illustrated in
As explained above, upon a sudden deceleration of the emergency vehicle responsive to a vehicle accident or the like, and an instantaneous force is exerted on the pivoting lock-out bar 52 and it moves instantaneously to the pivoting lock-out closed position. With the lock-out bar 52 in this closed position, movement of clamping member 30 toward the releasing position is prevented. After the event, it is also important that the lock-out bar 52 be incapable of backing out of the pivoting lock-out closed position until it is manually reset after the event has terminated. Prevention of such movement of the bar 52 is achieved because when it initially moves to the pivoting lockout closed position, the slidable wedge 60, almost simultaneously, moves downwardly to a position immediately behind the lock-out bar 52 as illustrated in
Referring to
The mechanical lock-out mechanism 70 of the present embodiment includes an L-shaped lock-out plate 72. The lock-out plate 72 is mounted to one of the side plates 25 via a plurality of studs 73 extending through respective slots 74 defined through the plate 72. The slots 74 extend from back to front such that the plate 72 is slidable from back to front. An upper portion of the plate 72 defines a blocking shoulder 78 which prevents rotation of the clamping member 30 when positioned in the lock-out closed position illustrated in
A spring 76 or the like extends from the back plate 23 of the bracket 21 to a connector 75 on the lock-out plate 72. The spring 76 biases the lock-out plate 72 toward the lock-out opened position as illustrated in
The mechanical lock-out plate 72 is responsive to extremely rapid or instantaneous deceleration of the vehicle within which the mounting bracket 20′ is secured to move instantly to the lock-out closed position. That is, upon a sudden deceleration, a force will be applied to the lock-out plate 72 in the direction of arrow B in
This application claims the benefit of U.S. Provisional Patent Application No. 62/122,542, filed on Oct. 23, 2014, and U.S. Provisional Application No. 62/123,125, filed on Nov. 7, 2014, the contents of each of which are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
1328271 | Dutemple | Jan 1920 | A |
2431698 | Lombard | Dec 1947 | A |
2615238 | Highwood | Oct 1952 | A |
3194529 | Brock | Jul 1965 | A |
3224644 | Davis | Dec 1965 | A |
3490727 | Miller | Jan 1970 | A |
3547391 | Johnson | Dec 1970 | A |
3565384 | Lockwood | Feb 1971 | A |
3603550 | Byrd | Sep 1971 | A |
D222527 | Ziaylek, Jr. | Nov 1971 | S |
3667714 | Ziaylek, Jr. | Jun 1972 | A |
3780972 | Brodersen | Dec 1973 | A |
3791403 | Folkerth | Feb 1974 | A |
3823907 | Ziaylek, Jr. | Jul 1974 | A |
D237357 | Ziaylek | Oct 1975 | S |
3971591 | Ziaylek | Jul 1976 | A |
D245929 | Montambo | Sep 1977 | S |
4213592 | Lingenfelser | Jul 1980 | A |
4304383 | Huston | Dec 1981 | A |
D264935 | Ziaylek, Jr. | Jun 1982 | S |
D265287 | Ziaylek, Jr. | Jul 1982 | S |
D267227 | Ziaylek, Jr. | Dec 1982 | S |
4379541 | Harkness | Apr 1983 | A |
4434961 | Hoye | Mar 1984 | A |
4505448 | Massie | Mar 1985 | A |
4586687 | Ziaylek, Jr. | May 1986 | A |
D298704 | Ziaylek, Jr. | Nov 1988 | S |
4848714 | Ziaylek, Jr. et al. | Jul 1989 | A |
D303738 | Ziaylek, Jr. | Oct 1989 | S |
D314325 | Ziaylek, Jr. et al. | Feb 1991 | S |
D319778 | Ziaylek, Jr. | Sep 1991 | S |
5213392 | Bostrom et al. | May 1993 | A |
5314233 | Bostrom et al. | May 1994 | A |
D347735 | Ziaylek, Jr. et al. | Jun 1994 | S |
5342009 | Lehner | Aug 1994 | A |
5681080 | Pond et al. | Oct 1997 | A |
D390367 | Demski et al. | Feb 1998 | S |
D394381 | Ziaylek, Jr. et al. | May 1998 | S |
5803544 | Block et al. | Sep 1998 | A |
5934749 | Pond et al. | Aug 1999 | A |
6702242 | Ziaylek, Jr. et al. | Mar 2004 | B1 |
6769659 | Martello | Aug 2004 | B1 |
6830226 | Field et al. | Dec 2004 | B2 |
D562116 | Ziaylek et al. | Feb 2008 | S |
7448586 | Ziaylek et al. | Nov 2008 | B2 |
7758004 | Brookman | Jul 2010 | B2 |
D620783 | Ziaylek | Aug 2010 | S |
7878472 | Lackore | Feb 2011 | B2 |
7922246 | Gale et al. | Apr 2011 | B2 |
7975978 | Ziaylek | Jul 2011 | B2 |
8220764 | Ziaylek | Jul 2012 | B2 |
D729142 | Ziaylek et al. | May 2015 | S |
20090045657 | Bostrom | Feb 2009 | A1 |
20090250582 | Ziaylek | Oct 2009 | A1 |
Number | Date | Country | |
---|---|---|---|
20160144206 A1 | May 2016 | US |
Number | Date | Country | |
---|---|---|---|
62122542 | Oct 2014 | US | |
62123125 | Nov 2014 | US |