Mounting bracket for solenoid valve

Information

  • Patent Grant
  • 6607172
  • Patent Number
    6,607,172
  • Date Filed
    Thursday, July 6, 2000
    24 years ago
  • Date Issued
    Tuesday, August 19, 2003
    20 years ago
Abstract
A mounting bracket mechanism and system for mounting a solenoid operated valve, such as an EGR valve, to a vehicle. A strap-type mounting bracket is positioned over the valve and secured to the engine or other vehicle component with a plurality of bolts or other fasteners. A curved recess or groove is provided in an engine component or surface, or a spacer member is positioned between the valve and the engine component or surface in order to maximize surface contact and thus heat transfer between the valve and the vehicle. Spring tab members can be positioned on the mounting bracket in order to minimize vibration of the valve in the vehicle and more securely fix it in place. The mounting bracket, spacer member, and valve can be assembled together as a modular preassembly for mounting to the engine.
Description




TECHNICAL FIELD




The present invention relates to mounting brackets for solenoid operated valves, and more particularly for mounting brackets for maximizing heat transfer and minimizing vibrations relative to solenoid operated exhaust gas recirculation (EGR) valves.




BACKGROUND OF THE INVENTION




Solenoid operated exhaust gas recirculation (EGR) valves are in common use today in vehicles with internal combustion engines. The EGR valves permit a certain amount of exhaust gases to be recirculated into the combustion system of the engines in order to improve fuel economy and to reduce undesirable emissions. The solenoid operated EGR valves are frequently robust in structure and as a result generate significant thermal energy which can affect the accuracy and performance of the solenoid valve mechanism. Also, the EGR valves need to be mounted securely in the vehicle so that vibration and other forces that they are commonly exposed to will not affect the mounting of the valves in the vehicle or affect the operation thereof. Vibrations in an EGR valve can cause noise and lead to vibrations in other components of the vehicle—both of which are undesirable.




A need exists for a mounting system for solenoid operated valves which maximizes the heat transfer from the valves and also reduces the possibility of undesirable vibrations.




SUMMARY OF THE INVENTION




It is an object of the present invention to provide an improved mounting system for solenoid operated valves and other components in vehicles. It is also an object of the present invention to provide a mounting mechanism for an EGR valve which maximizes heat transfer from the EGR valve to the vehicle.




It is a further object of the present invention to provide a mounting system for an EGR valve or other solenoid operated components in the vehicle which minimizes the vibration of that valve or component.




These and other objects, purposes and advantages of the present invention will become apparent from the following description of the invention when viewed in accordance with the attached drawings and the appended claims.




In accordance with the present invention, a mounting bracket mechanism and system are provided which maximizes heat transfer from a solenoid operated valve to the engine or other remote location and also minimizes vibration normally experienced in mounting brackets and systems for EGR valves and other solenoid operated components. In one embodiment of the present invention, a formed strap-type bracket member is utilized which fits over the EGR valve and holds it firmly in place against a cylinder head, intake manifold, or a location in the engine or vehicle engine compartment. The bracket is formed to fit closely over the solenoid motor portion of the EGR valve and provide either continuous contact or point contact along the surface of the EGR valve in order to facilitate heat transfer from the motor and EGR valve to the bracket member and thus to the vehicle.




The bracket member can be used in combination with a curved or formed spacer member (curved cradle), particularly made of aluminum material, that is positioned against the cylinder head, intake manifold, or the like. Alternatively, a groove or recess can be formed in the engine component in order to increase surface contact with the EGR valve and facilitate heat transfer from the valve to the engine component.




The bracket member is secured to the engine component by at least two fasteners, such as bolts or other conventional fasteners. When a spacer member is utilized, the bolts which pass through the bracket member can also, under certain circumstances, pass through the spacer member. The spacer member or curved cradle is typically designed for maximum contact with the mounting surface and for close proximity to the surface of the EGR valve. The bracket, fastener members, and formed groove or spacer member securely hold the EGR valve in place and reduce vibration of the EGR valve in the vehicle.




In another embodiment of the invention, the bracket member includes spring loading tabs that secure the EGR valve in place preferably with a four-point “box” pattern contact in combination with a spacer member or curved groove. Where a spacer member is utilized, locking tabs provided on the bracket member snap into mating grooves in the spacer member allowing the EGR valve, together with the bracket and spacer member, to be preassembled for ease of assembly in the vehicle.











BRIEF DESCRIPTION OF THE DRAWINGS




For a more complete understanding of this invention, reference should now be had to the embodiments illustrated in greater detail in the accompanying drawings described below by way of examples of the invention. In the drawings:





FIGS. 1 and 2

comprise side elevational and end elevational views, respectively, of a mounting bracket mechanism in use in accordance with the present invention;





FIGS. 3A and 3B

are side and top elevational views of the mounting bracket member shown in

FIGS. 1-2

;





FIGS. 4 and 5

illustrate additional embodiments of the invention utilizing spacer members with the bracket members;





FIGS. 6A and 6B

are side and top elevational views of a spacer member in accordance with the present invention;





FIG. 7

illustrates an alternate embodiment of the invention;





FIG. 8

illustrates an alternate embodiment of the invention in which a spacer member is utilized;





FIGS. 9A and 9B

are side and top elevational views of the mounting bracket member shown in

FIGS. 7 and 8

;





FIGS. 10 and 11

illustrate still another embodiment of the present invention;





FIGS. 12

,


13


and


14


are bottom, side and top views, respectively, of the mounting bracket used with the embodiment shown in

FIGS. 10 and 11

; and





FIG. 15

illustrates another embodiment of the invention.











DESCRIPTION OF THE PREFERRED EMBODIMENT(S)





FIGS. 1 and 2

illustrate a first embodiment of the invention when used with a solenoid operated exhaust gas recirculation (EGR) valve mechanism. In this regard, it is understood that the present inventive mounting bracket system can be used with any component of a vehicle or other device in which heat transfer is necessary from the device to a mounting surface and/or where vibration needs to be minimized. Thus, although the present invention will be described in accordance with its preferred use relative to solenoid operated EGR valves, it is to be understood that the present invention is not to be limited to use with EGR valves and can be used with other mechanisms and other components that would be known and obvious to persons of ordinary skill in the art.




In the drawings, the solenoid operated EGR valve, which is depicted schematically, is generally referred to by the reference numeral


10


. In the EGR valve


10


, a valve stem member


12


is positioned in a housing


14


and used to open and close a valve mechanism


16


. Exhaust gases are passed through the chamber


18


in the EGR valve and the valve mechanism


16


is operated to selectively introduce exhaust gases to the combustion system of the engine.




The valve stem member


12


is attached to a moveable armature member


20


in the EGR valve. The armature


20


moves longitudinally axially in the EGR valve mechanism


10


in accordance with activation of the coil


22


which is positioned around it. The coil and armature are part of a solenoid mechanism which is powered through electrical contacts in conduit


24


.




The EGR valve is secured to the vehicle


30


by mounting bracket


40


. The bracket


40


is shown more clearly in

FIGS. 3A and 3B

. As indicated, the bracket member


40


has generally an “Omega” shape with a curved section


42


and a pair of flat end flange members


44


and


46


. The end flanges have openings


45


and


47


, respectively, for securing the bracket to the vehicle


30


by fastener members, such as bolts


50


shown in

FIGS. 1 and 2

.




The portion of the vehicle or other engine portion


30


in which mounting bracket and EGR valve are secured can be a cylinder head, intake manifold, or other available component or portion of the vehicle.




The mounting bracket


40


is positioned tightly around the outer surface of the solenoid or motor portion of the EGR valve and acts as a heat sink to siphon heat from the EGR valve and pass it on or distribute it to the engine component


30


. For this purpose, a bracket member


40


is preferably made from an aluminum or steel material which have high heat transfer capabilities. The mounting bracket


40


can also be made from an aluminum alloy.




As shown in

FIG. 2

, the engine component


30


is provided with a curved groove or recess


32


in a surface in order to more closely mate with the curved outer surface of the EGR valve. This allows maximum heat transfer from the EGR valve to the engine component


30


which typically is subjected to cooling in one form or another.




The mounting bracket


40


can be coated with a zinc-chromate or zinc-iron coating for corrosion protection. The coating can be electrodeposited on the surface of the bracket, or the coating can be applied in a zinc-chromate conversion coating process. Both of these coating processes are well known in the art.





FIG. 4

illustrates an alternate embodiment of the invention in which a spacer member


60


is utilized. The spacer member


60


is positioned between the EGR valve


10


and the engine component


30


and used to facilitate heat transfer from the EGR valve to the engine component


30


. In this regard, preferably the spacer member


60


is made from an aluminum material.




The spacer member


60


by itself is shown in

FIGS. 6A and 6B

. The spacer member


60


includes a central portion


62


with a curved recess


64


(a/k/a “curved cradle”) therein and a pair of mounting flanges


66


and


68


. Openings


67


and


69


are provided in the flanges


66


and


68


, respectively, and are used to allow bolts


50


or other fasteners to pass through in order to attach the mounting bracket to the engine or vehicle component


30


.




An alternate embodiment of the invention utilizing a spacer member is shown in FIG.


5


. The spacer member


70


is utilized to position the EGR valve member


10


from the surface when the mounting component or surface cannot be readily machined. For this purpose, a raised center section


72


is provided in which the recess or cradle


74


is provided. Also, for the embodiment shown in

FIG. 5

, the bracket member


40


′ has a slightly different shape. In particular, the bracket member


40


′ has raised extender portions


76


positioned between the curved center portion


42


′ and the flat end flanges


44


′ and


46


′.




Different configurations affect the shape of the groove or cradle in the aluminum spacer or vehicle component. It can be designed for maximum contact with the outer surface of the EGR valve in order to maximize heat transfer from both the motor and gas passage areas of the valve. It also can be designed with two-point contact to minimize vibration issues.




In order to prevent the EGR valve from moving axially or longitudinally relative to the bracket members


40


and


40


′, a tab member is preferably provided on the bracket that fits within a notch in the housing of the EGR valve. An example of such a tab member is shown in phantom in

FIGS. 3A and 3B

and designated by the reference numeral


49


.




Other alternate embodiments of the present invention are shown in

FIGS. 7 and 8

. These embodiments utilize a mounting bracket member


80


which secures the EGR valve


10


in place. The mounting bracket


80


by itself is shown in

FIGS. 9A and 9B

. The primary difference between

FIGS. 7 and 8

is that the mounting bracket system shown in

FIG. 8

utilizes a spacer member


92


, while the embodiment shown in

FIG. 7

is mounted directly on the vehicle


30


′.




In

FIG. 7

, the EGR valve is positioned in a cradle or groove in an engine component


30


′ or other surface similar to that described above with respect to FIG.


2


. The bracket member


80


, however, has a strap-type holder member


82


which consists of a plurality of plane surfaces


83


,


84


,


85


,


86


,


87


,


88


and


89


.




The mounting bracket


80


in combination with the groove or recess


81


in the engine component


84


provide four points of contact with the EGR valve member


10


. These contact points are indicated by the letters A, B, C, and D in FIG.


7


. For this purpose, the recess or groove


81


has a curve which does not identically conform to the outer curvature of the EGR valve, but leaves a space


90


in-between contact points A and B.




The bracket member


80


is attached to the vehicle or component


30


′ by bolts


50


or other conventional fasteners in the same manner as the bracket members discussed above. Spring loaded bracket tabs


94


contact the housing


12


of the EGR valve


10


in order to provide the appropriate points of contact and heat transfer.




Also, with the embodiment shown in

FIG. 7

, strengthening gussets


93


can be provided on the bracket member


80


. The gussets strengthen the bracket member and also allow more secure fixation of the EGR valve


10


to the engine. The bracket sections


84


and


88


also are bent slightly outwardly, as shown in solid lines in

FIG. 9A

, in the relaxed positions, and then sprung inwardly to the positions


84


′ and


88


′ when installed and fastened in place by fasteners


50


. In this regard, the ends of flange members


83


and


89


move distances “X” when the bracket is installed over the EGR valve. This adds an additional biasing force on the valve to assist in holding it firmly in place.




In

FIG. 8

, the same bracket member


80


as set forth above with reference to

FIG. 7

is utilized in a mounting system utilizing a spacer member


92


. The mounting bracket member


80


includes the same features as discussed above and is utilized in a similar manner to connect the EGR valve to the vehicle component


84


.




The two spring loading tabs


94


that secure the EGR valve in position with the four point contact (or “box” pattern) provide optimum retention of the valve under vibration conditions. The contact with the bracket and engine component also allows for satisfactory heat transfer from the EGR valve to the bracket and engine component.




A further embodiment of the invention is shown in

FIGS. 10-14

. In this embodiment, the EGR valve


10


is positioned in a bracket member


100


together with a spacer member


110


. The three members are preassembled together prior to mounting the EGR valve in the vehicle. The bracket member


100


has a pair of spring tab members


102


which provide point contact with the EGR valve similar to that manner described above with reference to

FIGS. 7 and 8

. The flange members


104


and


106


which are used to secure the bracket member


102


to the vehicle component


108


, are turned inwardly rather than outwardly as shown in the embodiments described above.




With this embodiment, the ends of the bracket flanges


104


and


106


each have a pair of locator tabs


120


and


122


. The locator tabs are adapted to be positioned in mating socket members


124


and


125


in the spacer member


110


. The spacer member


110


also has a groove or cradle


114


which is adapted to mate with the external surface of the EGR valve


10


and provide maximum heat transfer contact.




Openings


112


are provided in both sides of the mounting bracket


100


in order to provide access to the bolts or other fasteners


50


which are used to attach the EGR valve and mounting bracket to the engine component


108


.




When the mounting bracket


100


is secured to the spacer member


110


with the mounting sockets


124


and


125


in combination with the mounting tabs


120


and


122


, and the subassembly of the EGR valve


10


in combination therewith can be supplied as a preassembled modular component to the assembly line for assembly into the vehicle. In this regard, due to the shape and material of the mounting bracket


100


, the tab members


120


and


122


snap into and securely hold the spacer member


100


in position. The assembly of parts are then shipped to the vehicle assembly facility ready to mount to the engine with a drive tool access through the openings


112


in the bracket member.





FIG. 12

is a bottom view of the mounting bracket


100


showing the slots for assembly.

FIGS. 13 and 14

depict the bracket member


100


by itself.




Another alternative embodiment of the invention is shown in FIG.


15


. The bracket member


140


has a body member


141


and pair of arm members


142


and


144


. The solenoid member or EGR valve is held in place by the arm members


142


and


144


. The bracket member


140


is attached to the mounting surface or the like by fasteners positioned through openings


146


in the body member


141


. Opening


148


allows communication with the internal passageways in the valve member.




While the invention has been described in connection with one or more embodiments, it is to be understood that the specific mechanisms and techniques which have been described are merely illustrative of the principles of the invention. Numerous modifications may be made to the methods and apparatus described without departing from the spirit and scope of the invention as defined by the appended claims.



Claims
  • 1. A preassembled modular system comprising a bracket member, a spacer member and a vehicle component device for securing said device to said vehicle, said bracket member having a body portion, a pair of mounting flanges, and a pair of spring tab members, said mounting flanges having first connecting means thereon and openings for entry of fastening members, said body portion configured to closely fit around a first portion of said device and having openings for access to fastening members used to secure said modular system to a vehicle, said pair of spring tab members contacting said device and securely holding it in place, said spacer member having a recessed groove and a second connecting means thereon, said recessed groove configured to closely fit around a second portion of said device, wherein when said device is positioned in said recessed groove, when said body portion is positioned adjacent said first portion of said device, and said first and second connecting means are interlocked together, a preassembled modular mechanism is assembled.
  • 2. The mounting bracket for securing a device to a vehicle in claim 1 wherein said bracket member and spacer member are both made of an aluminum material.
  • 3. A mounting bracket for securing a device to a vehicle, said bracket comprising a body portion and a spacer member, said body portion comprising a plurality of planar sections connected together, a pair of spring tab members directly inwardly for contact with said device, and a pair of mounting flange members and said spacer member being positioned between the device and a vehicle.
  • 4. The mounting bracket for securing a device to a vehicle in claim 3 further comprising a locating tab member on said body portion for preventing movement of said device in a longitudinal direction relative to said mounting bracket.
  • 5. The mounting bracket for securing a device to a vehicle in claim 3 wherein said flange members are bent inwardly toward one another and include mating members thereon for mating with said spacer member.
  • 6. The mounting bracket for securing a device to a vehicle in claim 3 wherein said spacer member has a recessed groove therein for closely fitting a portion of the external surface of a device.
  • 7. The mounting bracket for securing a device to a vehicle in claim 3 wherein said body member is spring biased in position by fastener members when said bracket member is secured to a vehicle and secures a device to the vehicle.
  • 8. The mounting bracket for securing a device to a vehicle in claim 3 wherein said mounting flange members are interconnected with said spacer member.
  • 9. The mounting bracket for securing a device to a vehicle in claim 8 wherein said body portion has openings thereon for access to fastener members used to secure said member and bracket member to a vehicle.
CROSS-REFERENCE TO RELATED APPLICATION

This is a continuation-in-part of U.S. patent application Ser. No. 09/266,650 filed on Mar. 11, 1999.

US Referenced Citations (16)
Number Name Date Kind
3163391 Adams Dec 1964 A
3220679 Larson Nov 1965 A
3273839 Bennett Sep 1966 A
3460788 Goldman Aug 1969 A
3867055 Wooden Feb 1975 A
4076197 Dochterman Feb 1978 A
4360178 Senter et al. Nov 1982 A
4502653 Curtis, Jr. Mar 1985 A
4903921 Logsdon Feb 1990 A
4958792 Rinderer Sep 1990 A
5297890 Commins Mar 1994 A
5593132 Hrytzak Jan 1997 A
5839703 Tesar Nov 1998 A
6010099 Wertz et al. Jan 2000 A
6152412 Basickes et al. Nov 2000 A
6182646 Silberstein et al. Feb 2001 B1
Foreign Referenced Citations (3)
Number Date Country
0 428 274 May 1991 EP
0 900 931 Oct 1999 EP
0 900 931 Oct 1999 EP
Continuation in Parts (1)
Number Date Country
Parent 09/266650 Mar 1999 US
Child 09/610805 US