The present invention generally relates to mounting devices and, more particularly, to mounting devices that may be used with nail strip panels.
Metal panels are being increasingly used to define building surfaces such as roofs and sidewalls. One type of metal panel is a standing seam panel, where portions of adjacent standing seam panels of the building surface are interconnected/nested in a manner that defines a standing seam. Standing seam panels are expensive compared to other metal panels, and building surfaces defined by metal panels may be more costly than other types of building surface constructions.
It is often desirable to install various types of structures on building surfaces, such as heating, air conditioning, and ventilation equipment. Installing structures on standing seam panel building surfaces in a manner that punctures the building surface at one or more locations is undesirable in a number of respects. One is simply the desire to avoid puncturing what is a relatively expensive building surface. Another is that increasing the number of locations where a metal panel building surface is punctured may increase the potential for leakage and/or corrosion.
A first aspect of the present invention is directed to a mounting device that is adapted for installation on a standing seam of a panel assembly. This mounting device includes a mounting body. A slot extends into this mounting body and is defined by first slot sidewall, a second slot sidewall, and a slot base, where the first and second slot sidewalls are disposed in non-parallel relation to one another (i.e., the first slot sidewall is not parallel to the second slot sidewall), and where the first and second slot sidewalls are always maintained in a fixed position relative to one another (e.g., the position/orientation of the first and second slot sidewalls is not adjustable). At least one seam fastener may be extended through the mounting body and into the slot (e.g., to retain a standing seam within the slot). At least one mounting fastener may be extended at least into the mounting body (e.g., to mount one or more attachments to the mounting body).
A number of feature refinements and additional features are applicable to the first aspect of the present invention. These feature refinements and additional features may be used individually or in any combination. The following discussion is applicable to the first aspect, up to the start of the discussion of a second aspect of the present invention.
The mounting body may be of one-piece construction. For instance, the mounting body may be of an integral construction (e.g., an extruded part). The mounting body may be characterized as lacking any joints of any kind. Each portion of the mounting body may be characterized as always being maintained in a fixed position relative to a remainder of the mounting body (e.g., by having the mounting body be of one-piece construction; such that the mounting body itself includes no separable parts). The mounting body may be formed from any appropriate material or combination of materials (e.g., a metal alloy).
The first and second slot sidewalls may each include at least one flat or planar section. The entirety of the second slot sidewall may be in the form of a single flat/planar surface. The first slot sidewall may include a first nose or projection that extends in a direction in which the second slot sidewall is spaced from the first slot sidewall. However, this first nose does not extend all the way to the second slot sidewall (e.g., to provide a continual opening to the slot; such that the mounting body may be positioned over/onto a standing seam of a panel assembly via the noted slot). A recess or depression may be incorporated on the first slot sidewall in alignment with each seam fastener that extends through the second slot sidewall and into the slot. Other than any such first nose and/or recess(s), the remainder of the first slot sidewall may be in the form of a single flat/planar surface.
The second slot sidewall may include a second nose or projection that extends in a direction in which the first slot sidewall is spaced from the second slot sidewall. However, this second nose does not extend all the way to the first slot sidewall (e.g., to provide a continual opening to the slot; such that the mounting body may be positioned over/onto a standing seam of a panel assembly via the noted slot). Other than this second nose, the remainder of the second slot sidewall may be in the form of a single flat/planar surface. In the case where the first slot sidewall includes the noted first nose and where the second slot sidewall includes the noted second nose, each such nose may define the lowermost extreme of the corresponding slot sidewall when the depth dimension of the slot coincides with the vertical dimension, and the first nose (first slot sidewall) may be disposed at a lower elevation than the second nose (second slot sidewall).
A first included angle may exist between the slot base and the first slot sidewall. A second included angle may exist between the slot base and the second slot sidewall. The magnitudes of the first and second included angles may be different from one another. The magnitude of the first included angle may be larger than the magnitude of the second included angle. In one embodiment, the first included angle is greater than 90° while the second included angle is at least substantially 90°. One embodiment has this first included angle being within a range of about 100° to about 110°. Another embodiment has this first included angle being about 105°.
Consider the case where a reference plane extends in the depth dimension of the slot (e.g., so as to intersect the slot base and be disposed between and in spaced relation to each of the first and second slot sidewalls). The first slot sidewall may be characterized as extending both away from the slot base and away from this reference plane (e.g., the first slot sidewall may diverge from this reference plane when proceeding away from the slot base), while the second slot sidewall may be characterized as extending away from the slot base in at least substantially parallel relation to this reference plane.
The spacing between the first and second slot sidewalls may progressively increase when proceeding away from the slot base. The spacing between the first and second slot sidewalls may progressively and continually increase proceeding away from the slot base until reaching one of the above-noted noses, where the spacing between the first and second slot sidewalls would be then be reduced.
The first and second slot sidewalls may be characterized as terminating at different elevations when a depth dimension of the slot coincides with a vertical dimension. The “side” of the mounting body that incorporates the first slot sidewall may be characterized as being “taller” than the “side” of the mounting body that incorporates the second slot sidewall when a depth dimension of the slot coincides with a vertical dimension.
The first slot sidewall may be characterized as extending from the slot base to a first edge (where the above-noted first nose may define/include this first edge), while the second slot sidewall may be characterized as extending from the slot base to a second edge (where the above-noted second nose may define/include this second edge). In one embodiment, the first edge of the first slot sidewall is spaced from the slot base by a first distance when measured in a first dimension that is orthogonal to the slot base, while the second edge of the second slot sidewall is spaced from the slot base by a second distance when measured in this same first dimension, where the second distance is less than the first distance. In one embodiment, the first edge of the first slot sidewall is spaced a first distance from a reference plane that contains at least a substantial portion of an upper surface of the mounting body (when measured in a first dimension that is orthogonal to this reference plane), while the second edge of the second slot sidewall is spaced a second distance from this same reference plane (when measured in this same first dimension), where the second distance is less than the first distance. The noted “first dimension” may correspond with the vertical dimension when the depth dimension of the slot coincides with this vertical dimension.
The mounting body may include an upper surface and an oppositely disposed lower surface, where the upper surface includes at least one flat section, and where the lower surface incorporates the above-noted slot (e.g., the depth dimension of the slot may be characterized as proceeding in the direction of this upper surface of the mounting body, where the slot base is spaced from the upper surface of the mounting body such that the slot does not extend entirely through the mounting body). The first slot sidewall may be characterized as extending from the slot base and at least generally away from the second slot sidewall, while the second slot sidewall may be characterized as being oriented at least substantially orthogonal to a reference plane that contains the noted flat section(s) of the upper surface (this reference plane could contain at least a substantial portion of the upper surface of the mounting body). Such a first slot sidewall may include the above-noted first nose, where this first nose is spaced further from the slot base than a remainder of the first slot sidewall.
A second aspect of the present invention is directed to a mounting device that is adapted for installation on a standing seam of a panel assembly. This mounting device includes a one-piece mounting body (e.g., such that the mounting body itself includes no separable parts) having an upper surface and an oppositely disposed lower surface, where the upper surface includes at least one flat section, and where the lower surface incorporates a slot. This slot extends into the mounting body and is defined by first slot sidewall, a second slot sidewall, and a slot base that extends between the first and second slot sidewalls. The first slot sidewall extends from the base and at least generally away from the second slot sidewall until reaching a first nose or projection, which then extends back in a direction that the second slot sidewall is spaced from the first slot sidewall. The second slot sidewall is oriented at least substantially orthogonal to a reference plane that contains the noted flat section(s) of the upper surface (at least a substantial portion of the upper surface of the mounting body could be contained within this reference plane). The first nose of the first slot sidewall may be disposed at a lower elevation than a lowermost edge of the second slot sidewall when the noted reference plane associated with the flat section(s) of the upper surface is horizontally disposed and further is disposed vertically above the slot base. At least one seam fastener may be extended through the mounting body and into the slot (e.g., to retain a standing seam within the slot). At least one mounting fastener may be extended into the mounting body (e.g., to mount one or more attachments to the mounting body).
The various features of the mounting device of the first aspect may be used in conjunction with the second aspect, individually or in any combination.
The mounting devices of each of the first and second aspects may be used in conjunction with a panel assembly defined by a plurality of nail strip panels. Each such nail strip panel may include a first seam rib and a second seam rib. Nesting the first seam rib on one nail strip panel with the second seam rib of another nail strip panel defines a standing seam. At least an upper portion of this standing seam may be received in the slot of the above-noted types of mounting devices. A lower portion of such a seam may include a recess, and the above-noted nose on the first slot sidewall may extend into this recess (e.g., to provide resistance to a “lifting off” of the mounting device relative to the standing seam).
Any feature of any other various aspects of the present invention that is intended to be limited to a “singular” context or the like will be clearly set forth herein by terms such as “only,” “single,” “limited to,” or the like. Merely introducing a feature in accordance with commonly accepted antecedent basis practice does not limit the corresponding feature to the singular (e.g., indicating that the mounting device includes “a seam fastener” alone does not mean that the mounting device includes only a single seam fastener). Moreover, any failure to use phrases such as “at least one” also does not limit the corresponding feature to the singular (e.g., indicating that a mounting device includes “a seam fastener” alone does not mean that the mounting device includes only a single seam fastener). Use of the phrase “at least generally” or the like in relation to a particular feature encompasses the corresponding characteristic and insubstantial variations thereof (e.g., indicating that a surface is at least generally flat encompasses the surface being flat). Finally, a reference of a feature in conjunction with the phrase “in one embodiment” does not limit the use of the feature to a single embodiment.
One embodiment of a mounting device is illustrated in
The mounting body 11 may be formed from any appropriate material or combination of materials (e.g., a metal alloy), and includes an upper surface 12, an oppositely disposed lower surface 16, a pair of oppositely disposed side surfaces 14, and a pair of oppositely disposed ends 18. The spacing between the ends 18 coincides with a length dimension for the mounting body 11, the spacing between the side surfaces 14 coincides with a width dimension for the mounting body 11, and the spacing between the upper surface 12 and lower surface 16 coincides with a height or depth dimension for the mounting body 11 (as well as for slot 20, discussed below).
The upper surface 12 of the mounting body 11 includes at least one flat section. A substantial portion of the upper surface 12 is flat in the illustrated embodiment all except the transition between the upper surface 12 and each of the two side surfaces 14, which may be rounded and/or chamfered. A single reference plane may contain at least a substantial portion of the upper surface 12 of the mounting body 11. In any case, typically the mounting device 10 will be installed on a panel assembly such that its upper surface 12 projects at least generally upwardly to accommodate supporting one or more attachments that may be appropriately secured to the mounting body 11. In this regard, the upper surface 12 may include at least one threaded hole 30 on a flat section thereof (two in the illustrated embodiment; any appropriate number of threaded holes 30 may be utilized; multiple threaded holes 30 typically being spaced along the length dimension of the mounting body 11) for receiving a corresponding mounting fastener 34 (e.g., the mounting fastener 34 may be threaded into a pre-defined threaded hole 30 on a flat section of the upper surface 12 and that extends into the mounting body 11). Another option is for the mounting fastener 34 to be self-tapping (i.e., so as to not require a threaded hole in the mounting body 11 prior to initially installing the mounting fastener 34 on the mounting body 11).
The lower surface 16 of the mounting body 11 includes a slot 20 that extends between the two ends 18 of the mounting body 11, and it is located between the pair of side surfaces 14 of the mounting body 11. This slot 20 is defined by a slot base 22 and a pair of slot sidewalls 24a, 24b. The slot sidewalls 24a, 24b are spaced apart to receive at least an end section of a standing seam of a panel assembly (e.g., standing seam 52 of panel assembly 40, discussed below in relation to
Each of the slot sidewalls 24a, 24b includes at least one flat section. In the illustrated embodiment, the entirety of the second slot sidewall 24b is flat or planar, while the entirety of the first slot sidewall 24a is also flat or planar other than for a nose or projection 28 located at a lower extreme thereof and for optional depressions or recesses (where each such recess is axially aligned with a seam fastener 36). Any such nose or projection 28 extends at least generally in the direction that the second slot sidewall 24b is spaced from the first slot sidewall 24a.
At least one threaded hole 32 (two in the illustrated embodiment; any appropriate number of threaded holes 32 may be utilized; multiple threaded holes 32 typically being spaced along the length dimension of the body 11) may extend from one of the side surfaces 14, through the body 11, and intersects the first slot sidewall or the second slot sidewall 24b. In the illustrated embodiment, the threaded hole(s) 32 intersect with the second slot sidewall 24b (e.g., it may be that no threaded holes 32 extend through the mounting body 11 to intersect with the first slot sidewall 24a).
An appropriate seam fastener 36 may be directed through a given threaded hole 32 of the mounting device 10 so as to extend into the slot 20 to engage a standing seam and secure the same against the opposing slot sidewall 24a or 24b (the first slot sidewall 24a in the illustrated embodiment). A cavity of any appropriate type may be included on this opposing slot sidewall 24a or 24b (the first slot sidewall 24a in the illustrated embodiment) to allow the aligned seam fastener 36 to deflect a corresponding portion of the standing seam into this cavity, although such may not be required in all instances. In any case and in one embodiment, the seam fastener 34 only interfaces with an exterior surface of a standing seam disposed in the slot 20. For instance, the end of the seam fastener 36 that interfaces with such a standing seam may be convex, rounded, or of a blunt-nosed configuration to provide a desirable interface with this standing seam (e.g., non-penetrating). Another option is for the seam fastener(s) 36 to be self-tapping (i.e., so as to not require a threaded hole prior to initially installing the seam fastener 34 on the body 11).
A number of characterizations may be made in relation to the slot 20 of the mounting device 10, and which may apply individually or in any combination. The first slot sidewall 24a and the second slot sidewall 24b are disposed other than in parallel relation—the first slot sidewall 24a is not parallel to the second slot sidewall 24b. The first slot sidewall 24a and the second slot sidewall 24b may be characterized as being disposed in different orientations.
A first included angle α1 is defined between the slot base 22 and the first slot sidewall 24a (e.g., between a flat section of the slot base 22 and an adjacent flat section of the first slot sidewall 24a). In the illustrated embodiment, this included angle α1 is greater than 90°. A second included angle as is defined between the slot base 22 and the second slot sidewall 24b (e.g., between a flat section of the slot base 22 and an adjacent flat section of the second slot sidewall 24b). In the illustrated embodiment, this included angle as is at least substantially 90°. The magnitude of the included angle α1 is thereby greater than the magnitude of the included angle α2. One embodiment has the included angle α1 being within a range of about 100° to about 110°. Another embodiment has the included angle α1 being about 105°.
The slot 20 may be characterized as having a variable width, including a continually variable width for at least a substantial portion of its depth (up to the nose 28 of first slot sidewall 24a). The spacing between the first slot sidewall 24a and the second slot sidewall 24b may progressively increase proceeding away from the slot base 22 up to the nose 28 of the first slot sidewall 24a. In one embodiment, the second slot sidewall 24b is disposed orthogonally to at least one of the upper surface 12 and the slot base 22, while the first slot sidewall 24a extends from the slot base 22 at least generally away from the second slot sidewall 24b.
The first slot sidewall 24a and the second slot sidewall 24b may be characterized as terminating at different elevations when the depth of the slot 20 extends in the vertical dimension. The up-and-down dimension in the view presented in
The first slot sidewall 24a may be characterized as extending from the slot base 22 to a first/lower edge 26a, while the second slot sidewall 24b may be characterized as extending from the slot base 22 to a second/lower edge 26b. In the illustrated embodiment, the nose 28 includes the first edge 26a of the first slot sidewall 24a. The upper surface 12 and the first edge 26a of the first slot sidewall 24a are separated by a distance D1 measured in a first dimension (the vertical dimension in the view presented in
The left nail strip panel 42 in
Each standing seam 52 of the panel assembly includes a recess 50 on one side thereof (the left side in the views of
It should be appreciated that the mounting device 10 may be used on the panel assembly 40′, and that the mounting device 10′ may be used on the panel assembly 40. Each of the mounting devices 10, 10′ may be used by any panel assembly defined by nail strip panels of the type described herein (where each nail strip panel includes two seam ribs that are spaced in its width dimension, such that one seam rib of one nail strip panel may be “nested” with a seam rib of an adjacent nail strip panel to define a standing seam).
The foregoing description of the present invention has been presented for purposes of illustration and description. Furthermore, the description is not intended to limit the invention to the form disclosed herein. Consequently, variations and modifications commensurate with the above teachings, and skill and knowledge of the relevant art, are within the scope of the present invention. The embodiments described hereinabove are further intended to explain best modes known of practicing the invention and to enable others skilled in the art to utilize the invention in such, or other embodiments and with various modifications required by the particular application(s) or use(s) of the present invention. It is intended that the appended claims be construed to include alternative embodiments to the extent permitted by the prior art.
This patent application is a continuation of U.S. patent application Ser. No. 15/628,927, filed on Jun. 21, 2017, which is a continuation of U.S. patent application Ser. No. 13/720,461, filed on Dec. 19, 2012, which claims the benefit of U.S. Provisional Patent Application No. 61/581,305, filed on Dec. 29, 2011, each of which applications are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
42992 | Howe | May 1864 | A |
97316 | Rogers | Nov 1869 | A |
106580 | Hathorn | Aug 1870 | A |
189431 | Creighton | Apr 1877 | A |
224608 | Rendle | Feb 1880 | A |
250580 | Rogers | Dec 1881 | A |
332413 | List | Dec 1885 | A |
386316 | Hawthorne | Jul 1888 | A |
405605 | Sagendorph | Jun 1889 | A |
407772 | Curtis et al. | Jul 1889 | A |
446217 | Dickelman | Feb 1891 | A |
459876 | Powers | Sep 1891 | A |
472014 | Densmore | Mar 1892 | A |
473512 | Laird | Apr 1892 | A |
491173 | Hayward | Feb 1893 | A |
507776 | Berger et al. | Oct 1893 | A |
529774 | Baird | Nov 1894 | A |
602983 | Folsom | Apr 1898 | A |
733697 | Chronik | Jul 1903 | A |
756884 | Parry | Apr 1904 | A |
831445 | Kosmatka | Sep 1906 | A |
881757 | Winsor | Mar 1908 | A |
884850 | Peter | Apr 1908 | A |
927522 | Gery | Jul 1909 | A |
933784 | Peter | Sep 1909 | A |
939516 | Laird | Nov 1909 | A |
1054091 | Darnall | Feb 1913 | A |
1085474 | Peterson | Jan 1914 | A |
1136460 | Wright | Apr 1915 | A |
1230363 | Baird | Jun 1917 | A |
1330309 | Dixon | Feb 1920 | A |
1399461 | Childs | Dec 1921 | A |
1463065 | Sieger | Jul 1923 | A |
1465042 | Hruska | Aug 1923 | A |
1511529 | Standlee | Oct 1924 | A |
1620428 | Becker | Mar 1927 | A |
1735927 | Shaffer | Nov 1929 | A |
1735937 | Shaffer | Nov 1929 | A |
1893481 | Adams | Jan 1933 | A |
1946862 | Koch, Jr. | Feb 1934 | A |
1957933 | Brandl | May 1934 | A |
2079768 | Levow | May 1937 | A |
2150497 | Fernberg | Mar 1939 | A |
2183008 | Camp | Dec 1939 | A |
2183844 | Murphy | Dec 1939 | A |
2192720 | Tapman | Mar 1940 | A |
2201320 | Place | May 1940 | A |
2250401 | Sylvester | Jul 1941 | A |
2274010 | Stellin | Feb 1942 | A |
2340692 | Ridd | Feb 1944 | A |
2429833 | Luce | Oct 1947 | A |
2443362 | Tinnerman | Jun 1948 | A |
2448752 | Wagner | Sep 1948 | A |
2457250 | Macomber | Dec 1948 | A |
2472586 | Harvey | Jun 1949 | A |
2504776 | Woodfield et al. | Apr 1950 | A |
2525217 | Glitsch | Oct 1950 | A |
2574007 | Anderson | Nov 1951 | A |
2658247 | Heuer | Nov 1953 | A |
2714037 | Singer et al. | Jul 1955 | A |
2730381 | Curtiss | Jan 1956 | A |
2740027 | Budd et al. | Mar 1956 | A |
2808491 | Rhee et al. | Oct 1957 | A |
2810173 | Bearden | Oct 1957 | A |
2875805 | Flora | Mar 1959 | A |
2985174 | Guth | May 1961 | A |
3039161 | Gagnon | Jun 1962 | A |
3064772 | Clay | Nov 1962 | A |
3095672 | Di Tullio | Jul 1963 | A |
3112016 | Peterson | Nov 1963 | A |
3136206 | Adams | Jun 1964 | A |
3194524 | Trumbull | Jul 1965 | A |
3221467 | Henkels | Dec 1965 | A |
3231076 | Frieman | Jan 1966 | A |
3232573 | Berman | Feb 1966 | A |
3242620 | Kaiser | Mar 1966 | A |
3247316 | Weimer, Jr. | Apr 1966 | A |
3288409 | Bethea, Jr. | Nov 1966 | A |
3296750 | Zaleski | Jan 1967 | A |
3298653 | Omholt | Jan 1967 | A |
3301513 | Sugaya | Jan 1967 | A |
3307235 | Hennings | Mar 1967 | A |
3318057 | Norsworthy | May 1967 | A |
3333799 | Peterson | Aug 1967 | A |
3335995 | Pickles | Aug 1967 | A |
3341909 | Havener | Sep 1967 | A |
3363864 | Olgreen | Jan 1968 | A |
3394524 | Howarth | Jul 1968 | A |
3425127 | Long | Feb 1969 | A |
3482369 | Burke | Dec 1969 | A |
3495363 | Johnson | Feb 1970 | A |
3496691 | Seaburg et al. | Feb 1970 | A |
3503244 | Joslin | Mar 1970 | A |
3523709 | Heggy et al. | Aug 1970 | A |
3527619 | Miley | Sep 1970 | A |
3565380 | Langren | Feb 1971 | A |
3572623 | Lapp | Mar 1971 | A |
3590543 | Heirich | Jul 1971 | A |
3656747 | Revell, Jr. et al. | Apr 1972 | A |
3667182 | Stemler | Jun 1972 | A |
3667185 | Maurer | Jun 1972 | A |
3715705 | Kuo | Feb 1973 | A |
3719919 | Tibolla | Mar 1973 | A |
3753326 | Kaufman, Sr. | Aug 1973 | A |
3778537 | Miller | Dec 1973 | A |
3792560 | Naylor | Feb 1974 | A |
3809799 | Taylor | May 1974 | A |
3810069 | Jaconette, Jr. | May 1974 | A |
3817270 | Ehrens et al. | Jun 1974 | A |
3824664 | Seeff | Jul 1974 | A |
3845601 | Kostecky | Nov 1974 | A |
3861098 | Schaub | Jan 1975 | A |
3904161 | Scott | Sep 1975 | A |
3914001 | Nelson et al. | Oct 1975 | A |
3921253 | Nelson | Nov 1975 | A |
3960352 | Plattner | Jun 1976 | A |
3986746 | Chartier | Oct 1976 | A |
4001474 | Hereth | Jan 1977 | A |
4007574 | Riddell | Feb 1977 | A |
4018538 | Smyrni et al. | Apr 1977 | A |
4034532 | Reinwall, Jr. | Jul 1977 | A |
4051289 | Adamson | Sep 1977 | A |
4127975 | Judkins | Dec 1978 | A |
4130970 | Cable | Dec 1978 | A |
4141182 | McMullen | Feb 1979 | A |
4162595 | Ramos et al. | Jul 1979 | A |
4162755 | Bott | Jul 1979 | A |
4189882 | Harrison et al. | Feb 1980 | A |
4189891 | Johnson et al. | Feb 1980 | A |
4200107 | Reid | Apr 1980 | A |
4203646 | Desso et al. | May 1980 | A |
4215677 | Erickson | Aug 1980 | A |
4223053 | Brogan | Sep 1980 | A |
4252458 | Keen | Feb 1981 | A |
4261338 | McAlister | Apr 1981 | A |
4261384 | Dahlbring | Apr 1981 | A |
4263474 | Tennant | Apr 1981 | A |
4270721 | Mainor, Jr. | Jun 1981 | A |
4291934 | Kund | Sep 1981 | A |
4307976 | Butler | Dec 1981 | A |
4321416 | Tennant | Mar 1982 | A |
4351140 | Simpson | Sep 1982 | A |
4366656 | Simpson | Jan 1983 | A |
4393859 | Marossy et al. | Jul 1983 | A |
4449335 | Fahey | May 1984 | A |
4456321 | Jones et al. | Jun 1984 | A |
4461514 | Schwarz | Jul 1984 | A |
4467582 | Hague | Aug 1984 | A |
4475776 | Teramachi | Oct 1984 | A |
4546586 | Knudson | Oct 1985 | A |
4560224 | Weisenburger | Dec 1985 | A |
4567706 | Wendt | Feb 1986 | A |
4570405 | Knudson | Feb 1986 | A |
4588240 | Ruehl et al. | May 1986 | A |
4593877 | van der Wyk | Jun 1986 | A |
4601600 | Karlsson | Jul 1986 | A |
4656794 | Thevenin et al. | Apr 1987 | A |
4666116 | Lloyd | May 1987 | A |
4674252 | Nicholas et al. | Jun 1987 | A |
4682454 | Simpson | Jul 1987 | A |
4686809 | Skelton | Aug 1987 | A |
4701586 | Hagberg | Oct 1987 | A |
4704058 | Crunwell | Nov 1987 | A |
4753425 | Yang | Jun 1988 | A |
4773791 | Hartkorn | Sep 1988 | A |
4782642 | Conville | Nov 1988 | A |
4799444 | Lisowski | Jan 1989 | A |
4805364 | Smolik | Feb 1989 | A |
4809476 | Satchell | Mar 1989 | A |
4810573 | Harriett | Mar 1989 | A |
4835927 | Michlovic | Jun 1989 | A |
4840529 | Phillips | Jun 1989 | A |
4848858 | Suzuki | Jul 1989 | A |
4854096 | Smolik | Aug 1989 | A |
4878331 | Taylor | Nov 1989 | A |
4895338 | Froutzis | Jan 1990 | A |
4901963 | Yoder | Feb 1990 | A |
4905444 | Semaan | Mar 1990 | A |
4909011 | Freeman et al. | Mar 1990 | A |
4949929 | Kesselman et al. | Aug 1990 | A |
4961712 | Schwenk et al. | Oct 1990 | A |
4970833 | Porter | Nov 1990 | A |
4987699 | Gold | Jan 1991 | A |
4991368 | Amstutz | Feb 1991 | A |
5007612 | Manfre | Apr 1991 | A |
5019111 | Dempsey et al. | May 1991 | A |
5036949 | Crocker et al. | Aug 1991 | A |
5039352 | Mueller | Aug 1991 | A |
5092939 | Nath et al. | Mar 1992 | A |
5094435 | Depperman | Mar 1992 | A |
5118571 | Petersen | Jun 1992 | A |
5119612 | Taylor et al. | Jun 1992 | A |
5125608 | McMaster et al. | Jun 1992 | A |
5127205 | Eidson | Jul 1992 | A |
5138820 | Pearce | Aug 1992 | A |
5140793 | Knudson | Aug 1992 | A |
5152107 | Strickert | Oct 1992 | A |
5164020 | Wagner et al. | Nov 1992 | A |
5176462 | Chen | Jan 1993 | A |
5187911 | Cotter | Feb 1993 | A |
5213300 | Rees | May 1993 | A |
5222340 | Bellem | Jun 1993 | A |
5224427 | Riches et al. | Jul 1993 | A |
5228248 | Haddock | Jul 1993 | A |
5251993 | Sigourney | Oct 1993 | A |
5268038 | Riermeier et al. | Dec 1993 | A |
5271194 | Drew | Dec 1993 | A |
5277006 | Ruster | Jan 1994 | A |
5282340 | Cline et al. | Feb 1994 | A |
5287670 | Funaki | Feb 1994 | A |
5290366 | Riermeier et al. | Mar 1994 | A |
5307601 | McCracken | May 1994 | A |
5312079 | Little, Jr. | May 1994 | A |
5313752 | Hatzinikolas | May 1994 | A |
D347701 | McCracken | Jun 1994 | S |
5352154 | Rotter et al. | Oct 1994 | A |
5356519 | Grabscheid et al. | Oct 1994 | A |
5356705 | Kelch et al. | Oct 1994 | A |
D351989 | Cline et al. | Nov 1994 | S |
5363624 | Cotter | Nov 1994 | A |
5379567 | Vahey | Jan 1995 | A |
5390453 | Untiedt | Feb 1995 | A |
5392574 | Sayers | Feb 1995 | A |
5408797 | Bellem | Apr 1995 | A |
5409549 | Mori | Apr 1995 | A |
5413063 | King | May 1995 | A |
5413397 | Gold | May 1995 | A |
5417028 | Meyer | May 1995 | A |
5425209 | Funaki | Jun 1995 | A |
5426906 | McCracken | Jun 1995 | A |
5439307 | Steinhilber | Aug 1995 | A |
5453027 | Buell et al. | Sep 1995 | A |
D364338 | Cline | Nov 1995 | S |
5479752 | Menegoli | Jan 1996 | A |
5482234 | Lyon | Jan 1996 | A |
5483772 | Haddock | Jan 1996 | A |
5483782 | Hall | Jan 1996 | A |
5491931 | Haddock | Feb 1996 | A |
5497591 | Nelson | Mar 1996 | A |
5522185 | Cline | Jun 1996 | A |
5533839 | Shimada | Jul 1996 | A |
D372421 | Cline | Aug 1996 | S |
5557903 | Haddock | Sep 1996 | A |
5571338 | Kadonome et al. | Nov 1996 | A |
5596858 | Jordan | Jan 1997 | A |
5596859 | Horton et al. | Jan 1997 | A |
5598785 | Zaguroli, Jr. | Feb 1997 | A |
5600971 | Suk | Feb 1997 | A |
D378343 | Macor | Mar 1997 | S |
5609326 | Stearns et al. | Mar 1997 | A |
5613328 | Alley | Mar 1997 | A |
5640812 | Crowley et al. | Jun 1997 | A |
5647178 | Cline | Jul 1997 | A |
5660008 | Bevilacqua | Aug 1997 | A |
5664750 | Cohen | Sep 1997 | A |
5667181 | van Leeuwen | Sep 1997 | A |
5681191 | Robicheau et al. | Oct 1997 | A |
5688131 | Byfield, Jr. | Nov 1997 | A |
D387443 | Blankenbiller | Dec 1997 | S |
5694721 | Haddock | Dec 1997 | A |
5697197 | Simpson | Dec 1997 | A |
5715640 | Haddock | Feb 1998 | A |
5732513 | Alley | Mar 1998 | A |
5743063 | Boozer | Apr 1998 | A |
5743497 | Michael | Apr 1998 | A |
5746029 | Ullman | May 1998 | A |
5755824 | Blechschmidt et al. | May 1998 | A |
5765310 | Gold | Jun 1998 | A |
5765329 | Huang | Jun 1998 | A |
5787653 | Sakai et al. | Aug 1998 | A |
5794386 | Klein | Aug 1998 | A |
5809703 | Kelly | Sep 1998 | A |
5826379 | Curry | Oct 1998 | A |
5826390 | Sacks | Oct 1998 | A |
5828008 | Lockwood et al. | Oct 1998 | A |
5829723 | Brunner | Nov 1998 | A |
5842318 | Bass et al. | Dec 1998 | A |
5890340 | Kafarowski | Apr 1999 | A |
5901507 | Smeja et al. | May 1999 | A |
5942046 | Kahlfuss et al. | Aug 1999 | A |
5970586 | Demel et al. | Oct 1999 | A |
5983588 | Haddock | Nov 1999 | A |
5994640 | Bansemir et al. | Nov 1999 | A |
5997368 | Mello | Dec 1999 | A |
6029415 | Culpepper et al. | Feb 2000 | A |
6073410 | Schimpf et al. | Jun 2000 | A |
6073920 | Colley | Jun 2000 | A |
6079678 | Schott | Jun 2000 | A |
6083010 | Daoud | Jul 2000 | A |
6088979 | Neal | Jul 2000 | A |
6095462 | Morgan | Aug 2000 | A |
6099203 | Landes | Aug 2000 | A |
6105317 | Tomiuchi et al. | Aug 2000 | A |
6106310 | Davis et al. | Aug 2000 | A |
6111189 | Garvison et al. | Aug 2000 | A |
6119317 | Pfister | Sep 2000 | A |
6132070 | Vosika et al. | Oct 2000 | A |
6158180 | Edwards | Dec 2000 | A |
6164033 | Haddock | Dec 2000 | A |
6182403 | Mimura et al. | Feb 2001 | B1 |
6186799 | Mello | Feb 2001 | B1 |
6206991 | Starr | Mar 2001 | B1 |
6223477 | Alley | May 2001 | B1 |
6237297 | Paroly | May 2001 | B1 |
6253496 | Gilchrist | Jul 2001 | B1 |
6256934 | Alley | Jul 2001 | B1 |
6269596 | Ohtsuka et al. | Aug 2001 | B1 |
6276285 | Ruch | Aug 2001 | B1 |
6320114 | Kuechler | Nov 2001 | B1 |
6336616 | Lin | Jan 2002 | B1 |
6360491 | Ullman | Mar 2002 | B1 |
6364262 | Gibson et al. | Apr 2002 | B1 |
6364374 | Noone et al. | Apr 2002 | B1 |
6370828 | Genschorek | Apr 2002 | B1 |
6382569 | Schattner et al. | May 2002 | B1 |
6385914 | Alley | May 2002 | B2 |
6393796 | Goettl et al. | May 2002 | B1 |
6443680 | Bodin | Sep 2002 | B1 |
6453623 | Nelson et al. | Sep 2002 | B1 |
6470629 | Haddock | Oct 2002 | B1 |
6497080 | Malcolm | Dec 2002 | B1 |
6499259 | Hockman | Dec 2002 | B1 |
6508442 | Dolez | Jan 2003 | B1 |
6521821 | Makita et al. | Feb 2003 | B2 |
6534702 | Makita et al. | Mar 2003 | B1 |
6536166 | Alley | Mar 2003 | B1 |
6536729 | Haddock | Mar 2003 | B1 |
6576830 | Nagao et al. | Jun 2003 | B2 |
6602016 | Eckart et al. | Aug 2003 | B2 |
6622441 | Miller | Sep 2003 | B2 |
6637671 | Alley | Oct 2003 | B2 |
6647671 | Alley | Nov 2003 | B1 |
6655633 | Chapman, Jr. | Dec 2003 | B1 |
6665991 | Hasan | Dec 2003 | B2 |
6688047 | McNichol | Feb 2004 | B1 |
D487595 | Sherman | Mar 2004 | S |
6715256 | Fischer | Apr 2004 | B1 |
6718718 | Haddock | Apr 2004 | B2 |
6725623 | Riddell et al. | Apr 2004 | B1 |
6730841 | Heckeroth | May 2004 | B2 |
6732982 | Messinger | May 2004 | B1 |
6751919 | Calixto | Jun 2004 | B2 |
D495595 | Dressler | Sep 2004 | S |
D496738 | Sherman | Sep 2004 | S |
6799742 | Nakamura et al. | Oct 2004 | B2 |
6834466 | Trevorrow | Dec 2004 | B2 |
6918217 | Jakob-Bamberg et al. | Jul 2005 | B2 |
6918727 | Huang | Jul 2005 | B2 |
6922948 | Smeja et al. | Aug 2005 | B2 |
6967278 | Hatsukaiwa et al. | Nov 2005 | B2 |
7012188 | Erling | Mar 2006 | B2 |
7013612 | Haddock | Mar 2006 | B2 |
7063763 | Chapman, Jr. | Jun 2006 | B2 |
7100338 | Haddock | Sep 2006 | B2 |
7104020 | Suttle | Sep 2006 | B1 |
7127852 | Dressler | Oct 2006 | B1 |
7191794 | Hodges | Mar 2007 | B2 |
7195513 | Gherardini | Mar 2007 | B1 |
7219863 | Collett, II | May 2007 | B1 |
7240770 | Mullins | Jul 2007 | B2 |
7260918 | Liebendorfer | Aug 2007 | B2 |
7281695 | Jordan | Oct 2007 | B2 |
7386922 | Taylor | Jun 2008 | B1 |
7406924 | Impey | Aug 2008 | B1 |
7410139 | Rohrich | Aug 2008 | B1 |
7431252 | Birli | Oct 2008 | B2 |
7435134 | Lenox | Oct 2008 | B2 |
7451573 | Orszulak et al. | Nov 2008 | B2 |
7458555 | Mastropaolo | Dec 2008 | B2 |
7459196 | Sturm | Dec 2008 | B2 |
7469511 | Wobber | Dec 2008 | B2 |
7493730 | Fennell, Jr. | Feb 2009 | B2 |
7513080 | Showalter | Apr 2009 | B1 |
7516580 | Fennell, Jr. | Apr 2009 | B2 |
7568871 | Chopp, Jr. et al. | Aug 2009 | B2 |
7578711 | Robinson | Aug 2009 | B2 |
7600349 | Liebendorfer | Oct 2009 | B2 |
7658356 | Nehls | Feb 2010 | B1 |
7686625 | Dyer et al. | Mar 2010 | B1 |
7703256 | Haddock | Apr 2010 | B2 |
7707800 | Kannisto | May 2010 | B2 |
7712278 | Lonardi | May 2010 | B2 |
7721492 | Plaisted et al. | May 2010 | B2 |
7731138 | Wiesner | Jun 2010 | B2 |
7733667 | Qin et al. | Jun 2010 | B2 |
7758003 | Pourtier | Jul 2010 | B2 |
7758011 | Haddock | Jul 2010 | B2 |
7762027 | Wentworth et al. | Jul 2010 | B1 |
7766292 | Liebendorfer | Aug 2010 | B2 |
7780472 | Lenox | Aug 2010 | B2 |
7788874 | Miller | Sep 2010 | B2 |
7788879 | Brandes et al. | Sep 2010 | B2 |
7824191 | Browder | Nov 2010 | B1 |
7827920 | Beck et al. | Nov 2010 | B2 |
7845127 | Brescia | Dec 2010 | B2 |
7847181 | Brescia | Dec 2010 | B2 |
7861480 | Wendelburg et al. | Jan 2011 | B2 |
7861485 | Wentworth et al. | Jan 2011 | B1 |
7874117 | Simpson | Jan 2011 | B1 |
7891618 | Carnevali | Feb 2011 | B2 |
7895808 | Wentworth et al. | Mar 2011 | B1 |
7905064 | Wentworth et al. | Mar 2011 | B1 |
7915519 | Kobayashi | Mar 2011 | B2 |
7926777 | Koesema, Jr. | Apr 2011 | B2 |
7954287 | Bravo et al. | Jun 2011 | B2 |
7988464 | Kossak | Aug 2011 | B2 |
8011153 | Orchard | Sep 2011 | B2 |
8066200 | Hepner et al. | Nov 2011 | B2 |
8070119 | Taylor | Dec 2011 | B2 |
8092129 | Wiley et al. | Jan 2012 | B2 |
8096503 | Verweyen | Jan 2012 | B2 |
8109048 | West | Feb 2012 | B2 |
8146299 | Stearns et al. | Apr 2012 | B2 |
8151522 | Stearns et al. | Apr 2012 | B2 |
8153700 | Stearns et al. | Apr 2012 | B2 |
D658977 | Riddell et al. | May 2012 | S |
8226061 | Nehls | Jul 2012 | B2 |
8251326 | McPheeters | Aug 2012 | B2 |
8272172 | Li | Sep 2012 | B2 |
8294026 | Wang et al. | Oct 2012 | B2 |
8312678 | Haddock | Nov 2012 | B1 |
8316590 | Cusson | Nov 2012 | B2 |
8316621 | Safari Kermanshahi et al. | Nov 2012 | B2 |
D674513 | Liu | Jan 2013 | S |
8344239 | Plaisted | Jan 2013 | B2 |
8347572 | Piedmont | Jan 2013 | B2 |
8375654 | West et al. | Feb 2013 | B1 |
8387319 | Gilles-Gagnon et al. | Mar 2013 | B1 |
8404963 | Kobayashi | Mar 2013 | B2 |
8407895 | Hartelius et al. | Apr 2013 | B2 |
8413946 | Hartelius et al. | Apr 2013 | B2 |
8424821 | Liu | Apr 2013 | B2 |
8430372 | Haddock | Apr 2013 | B2 |
8448405 | Schaefer et al. | May 2013 | B2 |
8453986 | Schnitzer | Jun 2013 | B2 |
8458967 | Kalkanoglu et al. | Jun 2013 | B2 |
8495997 | Laubach | Jul 2013 | B1 |
8505254 | Welter et al. | Aug 2013 | B2 |
8528888 | Header | Sep 2013 | B2 |
8584424 | Smith | Nov 2013 | B2 |
8590223 | Kilgore et al. | Nov 2013 | B2 |
8627617 | Haddock et al. | Jan 2014 | B2 |
D699176 | Salomon et al. | Feb 2014 | S |
8640402 | Bilge | Feb 2014 | B1 |
8656649 | Haddock | Feb 2014 | B2 |
8683751 | Stearns | Apr 2014 | B2 |
8695290 | Kim et al. | Apr 2014 | B1 |
8701354 | Stearns et al. | Apr 2014 | B2 |
8713881 | DuPont | May 2014 | B2 |
8733027 | Marston | May 2014 | B1 |
8745935 | DuPont et al. | Jun 2014 | B2 |
8752338 | Schaefer et al. | Jun 2014 | B2 |
8756870 | Teller et al. | Jun 2014 | B2 |
8770885 | Myers | Jul 2014 | B2 |
8776456 | Schrock | Jul 2014 | B1 |
8782983 | Stearns | Jul 2014 | B2 |
8791611 | Arnould et al. | Jul 2014 | B2 |
8806813 | Plaisted et al. | Aug 2014 | B2 |
8806815 | Liu et al. | Aug 2014 | B1 |
8813441 | Rizzo | Aug 2014 | B2 |
8826163 | Chanin et al. | Sep 2014 | B1 |
8826618 | Stearns | Sep 2014 | B2 |
8829330 | Meyer et al. | Sep 2014 | B2 |
8833714 | Haddock et al. | Sep 2014 | B2 |
8839573 | Cusson et al. | Sep 2014 | B2 |
8839575 | Liu et al. | Sep 2014 | B1 |
8844234 | Haddock | Sep 2014 | B2 |
8850754 | Rizzo | Oct 2014 | B2 |
8854829 | Bopp et al. | Oct 2014 | B1 |
8888431 | Haney | Nov 2014 | B2 |
8893441 | Hess, III et al. | Nov 2014 | B1 |
8894424 | DuPont | Nov 2014 | B2 |
D718703 | Rizzo | Dec 2014 | S |
D718704 | Rizzo | Dec 2014 | S |
8910928 | Header | Dec 2014 | B2 |
8925263 | Haddock et al. | Jan 2015 | B2 |
8935893 | Liu et al. | Jan 2015 | B2 |
8938932 | Wentworth et al. | Jan 2015 | B1 |
8950157 | Schrock | Feb 2015 | B1 |
8955259 | Hemingway | Feb 2015 | B2 |
8966833 | Ally | Mar 2015 | B2 |
8991065 | Schrock | Mar 2015 | B1 |
9003728 | Asci | Apr 2015 | B2 |
9003733 | Simpson et al. | Apr 2015 | B1 |
9010042 | Anderson et al. | Apr 2015 | B2 |
9011034 | Liu | Apr 2015 | B2 |
9052123 | Anderson et al. | Jun 2015 | B2 |
9065191 | Martin et al. | Jun 2015 | B2 |
9076899 | Schrock | Jul 2015 | B2 |
9085900 | Haddock | Jul 2015 | B2 |
9086185 | Haddock | Jul 2015 | B2 |
9097443 | Liu et al. | Aug 2015 | B2 |
9127451 | Boor | Sep 2015 | B1 |
9134044 | Stearns et al. | Sep 2015 | B2 |
9147785 | Haddock et al. | Sep 2015 | B2 |
D740113 | Olenick | Oct 2015 | S |
9200456 | Murphy | Dec 2015 | B2 |
9222263 | Haddock | Dec 2015 | B2 |
9223907 | Chanin et al. | Dec 2015 | B2 |
9306490 | Haddock et al. | Apr 2016 | B2 |
9309910 | Anderson et al. | Apr 2016 | B2 |
9331629 | Cheung et al. | May 2016 | B2 |
9341285 | Magno, Jr. et al. | May 2016 | B2 |
9447988 | Stearns et al. | Sep 2016 | B2 |
9479110 | Patton et al. | Oct 2016 | B2 |
9496697 | Wentworth | Nov 2016 | B1 |
9530916 | Haddock et al. | Dec 2016 | B2 |
9534390 | Pendley et al. | Jan 2017 | B2 |
9608559 | Haddock et al. | Mar 2017 | B2 |
9611652 | Haddock et al. | Apr 2017 | B2 |
9647433 | Meine | May 2017 | B2 |
9647607 | Patton et al. | May 2017 | B2 |
9689411 | Meine et al. | Jun 2017 | B2 |
9712106 | Wentworth et al. | Jul 2017 | B2 |
9714670 | Header | Jul 2017 | B2 |
9722532 | Almy | Aug 2017 | B2 |
9732512 | Haddock | Aug 2017 | B2 |
9742173 | Wentworth | Aug 2017 | B2 |
9755572 | Wentworth et al. | Sep 2017 | B2 |
D800055 | Rothschild | Oct 2017 | S |
9813012 | Wentworth et al. | Nov 2017 | B2 |
9819303 | Ash | Nov 2017 | B2 |
9831817 | Rothschild | Nov 2017 | B2 |
9845584 | Goldammer | Dec 2017 | B1 |
9850661 | Kovacs | Dec 2017 | B2 |
9865938 | Meine et al. | Jan 2018 | B2 |
9876463 | Jasmin | Jan 2018 | B2 |
9893676 | Anderson et al. | Feb 2018 | B2 |
9893677 | Liu | Feb 2018 | B1 |
9920958 | Haddock et al. | Mar 2018 | B2 |
9926706 | Hockman | Mar 2018 | B2 |
9966745 | Wentworth | May 2018 | B2 |
10036414 | Wiley et al. | Jul 2018 | B2 |
D827160 | Menton | Aug 2018 | S |
10053856 | Haddock | Aug 2018 | B2 |
10054336 | Haddock et al. | Aug 2018 | B2 |
D827873 | Menton | Sep 2018 | S |
D827874 | Menton | Sep 2018 | S |
10077562 | Haddock et al. | Sep 2018 | B2 |
10103682 | Haddock et al. | Oct 2018 | B2 |
10103683 | Wentworth | Oct 2018 | B2 |
10106987 | Haddock et al. | Oct 2018 | B2 |
10141662 | Bernard et al. | Nov 2018 | B2 |
10186791 | Meine et al. | Jan 2019 | B2 |
10202991 | Lewis | Feb 2019 | B2 |
10211773 | Jasmin et al. | Feb 2019 | B2 |
10211775 | Wentworth et al. | Feb 2019 | B1 |
10218305 | Schrock | Feb 2019 | B1 |
10291176 | Wentworth et al. | May 2019 | B2 |
10312855 | Lester et al. | Jun 2019 | B2 |
10337764 | Ash et al. | Jul 2019 | B2 |
10359069 | Ash et al. | Jul 2019 | B2 |
10385573 | Van Leuven | Aug 2019 | B2 |
10443896 | Haddock et al. | Oct 2019 | B2 |
10454190 | Martin | Oct 2019 | B1 |
10472828 | Stearns et al. | Nov 2019 | B2 |
10502457 | Haddock et al. | Dec 2019 | B2 |
10511252 | Wentworth et al. | Dec 2019 | B2 |
10530293 | Legall et al. | Jan 2020 | B2 |
10551090 | De Vogel et al. | Feb 2020 | B2 |
10594251 | Stearns et al. | Mar 2020 | B2 |
10622935 | Liu | Apr 2020 | B1 |
10634175 | Haddock | Apr 2020 | B2 |
10640980 | Haddock | May 2020 | B2 |
10644643 | Stearns et al. | May 2020 | B2 |
10673151 | Ash et al. | Jun 2020 | B2 |
10686401 | Ash et al. | Jun 2020 | B2 |
10749459 | Liu et al. | Aug 2020 | B1 |
10749466 | Smeja | Aug 2020 | B2 |
10763777 | Stearns et al. | Sep 2020 | B2 |
10797634 | Jasmin et al. | Oct 2020 | B1 |
10837476 | Lewis | Nov 2020 | B2 |
10851826 | Ash et al. | Dec 2020 | B2 |
10868491 | Wentworth et al. | Dec 2020 | B2 |
D909853 | Jasmin | Feb 2021 | S |
10931225 | Yang et al. | Feb 2021 | B2 |
10948002 | Haddock | Mar 2021 | B2 |
11009262 | Ash et al. | May 2021 | B2 |
11012023 | Stearns et al. | May 2021 | B2 |
D923203 | Muther | Jun 2021 | S |
D923823 | Muther | Jun 2021 | S |
11041310 | Haddock | Jun 2021 | B1 |
11118353 | Stearns et al. | Sep 2021 | B2 |
11121484 | Ash et al. | Sep 2021 | B2 |
11121669 | Stearns et al. | Sep 2021 | B2 |
11139774 | Wentworth et al. | Oct 2021 | B2 |
11189941 | Ash et al. | Nov 2021 | B2 |
11196187 | Ash et al. | Dec 2021 | B2 |
11201581 | Stearns et al. | Dec 2021 | B2 |
20020026765 | Vahey | Mar 2002 | A1 |
20020088196 | Haddock | Jul 2002 | A1 |
20030015637 | Liebendorfer | Jan 2003 | A1 |
20030062078 | Mimura | Apr 2003 | A1 |
20030070368 | Shingleton | Apr 2003 | A1 |
20030131551 | Mollinger et al. | Jul 2003 | A1 |
20030146346 | Chapman, Jr. | Aug 2003 | A1 |
20030173460 | Chapman, Jr. | Sep 2003 | A1 |
20030201009 | Nakajima et al. | Oct 2003 | A1 |
20040035065 | Orszulak et al. | Feb 2004 | A1 |
20040055233 | Showalter | Mar 2004 | A1 |
20040164208 | Nielson et al. | Aug 2004 | A1 |
20040231949 | Le et al. | Nov 2004 | A1 |
20040237465 | Nd | Dec 2004 | A1 |
20050102958 | Anderson | May 2005 | A1 |
20050115176 | Russell | Jun 2005 | A1 |
20050210769 | Harvey | Sep 2005 | A1 |
20050257434 | Hockman | Nov 2005 | A1 |
20060065805 | Barton | Mar 2006 | A1 |
20060075691 | Verkamlp | Apr 2006 | A1 |
20060096061 | Weiland et al. | May 2006 | A1 |
20060118163 | Plaisted et al. | Jun 2006 | A1 |
20060174571 | Panasik et al. | Aug 2006 | A1 |
20060174931 | Mapes et al. | Aug 2006 | A1 |
20060254192 | Fennell, Jr. | Nov 2006 | A1 |
20070075198 | Foser | Apr 2007 | A1 |
20070131273 | Kobayashi | Jun 2007 | A1 |
20070199590 | Tanaka et al. | Aug 2007 | A1 |
20070241238 | Neace | Oct 2007 | A1 |
20070246039 | Brazier et al. | Oct 2007 | A1 |
20070248434 | Wiley et al. | Oct 2007 | A1 |
20070289229 | Aldo | Dec 2007 | A1 |
20070289233 | Haddock | Dec 2007 | A1 |
20080035140 | Placer et al. | Feb 2008 | A1 |
20080041011 | Kannisto | Feb 2008 | A1 |
20080184639 | Cotter | Aug 2008 | A1 |
20080190047 | Allen | Aug 2008 | A1 |
20080236520 | Maehara et al. | Oct 2008 | A1 |
20080265232 | Terrels et al. | Oct 2008 | A1 |
20080302407 | Kobayashi | Dec 2008 | A1 |
20080302928 | Haddock | Dec 2008 | A1 |
20090000220 | Lenox | Jan 2009 | A1 |
20090007520 | Navon | Jan 2009 | A1 |
20090194098 | Placer | Aug 2009 | A1 |
20090229213 | Mistelski | Sep 2009 | A1 |
20090230205 | Hepner et al. | Sep 2009 | A1 |
20090320826 | Kufner | Dec 2009 | A1 |
20100058701 | Yao | Mar 2010 | A1 |
20100133040 | London | Jun 2010 | A1 |
20100154784 | King et al. | Jun 2010 | A1 |
20100162641 | Reyal et al. | Jul 2010 | A1 |
20100171016 | Haddock | Jul 2010 | A1 |
20100175738 | Huss et al. | Jul 2010 | A1 |
20100193651 | Railsback et al. | Aug 2010 | A1 |
20100206303 | Thorne | Aug 2010 | A1 |
20100212720 | Meyer et al. | Aug 2010 | A1 |
20100276558 | Faust et al. | Nov 2010 | A1 |
20100288337 | Rizzo | Nov 2010 | A1 |
20100293874 | Liebendorfer | Nov 2010 | A1 |
20100314517 | Patzer | Dec 2010 | A1 |
20110039458 | Byrne | Feb 2011 | A1 |
20110078892 | Hartelius et al. | Apr 2011 | A1 |
20110120047 | Stearns et al. | May 2011 | A1 |
20110138585 | Kmita et al. | Jun 2011 | A1 |
20110154750 | Welter et al. | Jun 2011 | A1 |
20110174360 | Plaisted et al. | Jul 2011 | A1 |
20110209745 | Korman | Sep 2011 | A1 |
20110214365 | Aftanas | Sep 2011 | A1 |
20110214388 | London | Sep 2011 | A1 |
20110232212 | Pierson | Sep 2011 | A1 |
20110239546 | Tsuzuki et al. | Oct 2011 | A1 |
20110247292 | Li | Oct 2011 | A1 |
20110260027 | Farnham, Jr. | Oct 2011 | A1 |
20110271611 | Maracci | Nov 2011 | A1 |
20110272545 | Liu | Nov 2011 | A1 |
20110314752 | Meier | Dec 2011 | A1 |
20120073630 | Wu | Mar 2012 | A1 |
20120079781 | Koller | Apr 2012 | A1 |
20120085041 | Place | Apr 2012 | A1 |
20120099943 | Chiu | Apr 2012 | A1 |
20120102853 | Rizzo | May 2012 | A1 |
20120153108 | Schneider | Jun 2012 | A1 |
20120167364 | Koch et al. | Jul 2012 | A1 |
20120192519 | Ray | Aug 2012 | A1 |
20120193310 | Fluhrer et al. | Aug 2012 | A1 |
20120201601 | Rizzo | Aug 2012 | A1 |
20120244729 | Rivera et al. | Sep 2012 | A1 |
20120248271 | Zeilenga | Oct 2012 | A1 |
20120267490 | Haddock | Oct 2012 | A1 |
20120298188 | West et al. | Nov 2012 | A1 |
20120299233 | Header | Nov 2012 | A1 |
20120304556 | Teller | Dec 2012 | A1 |
20120325761 | Kubsch et al. | Dec 2012 | A1 |
20130048056 | Kilgore et al. | Feb 2013 | A1 |
20130089388 | Liu et al. | Apr 2013 | A1 |
20130091692 | Stanley | Apr 2013 | A1 |
20130145711 | Haddock | Jun 2013 | A1 |
20130161462 | Haddock | Jun 2013 | A1 |
20130167470 | Montgomery et al. | Jul 2013 | A1 |
20130168525 | Haddock | Jul 2013 | A1 |
20130220403 | Rizzo | Aug 2013 | A1 |
20130227833 | Rizzo | Sep 2013 | A1 |
20130263917 | Hamamura | Oct 2013 | A1 |
20130313043 | Lallier | Nov 2013 | A1 |
20130340358 | Danning | Dec 2013 | A1 |
20140003861 | Cheung | Jan 2014 | A1 |
20140041202 | Schnitzer et al. | Feb 2014 | A1 |
20140069048 | Ally | Mar 2014 | A1 |
20140096462 | Haddock | Apr 2014 | A1 |
20140179133 | Redel | Jun 2014 | A1 |
20140220834 | Rizzo | Aug 2014 | A1 |
20140260068 | Pendley et al. | Sep 2014 | A1 |
20140283467 | Chabas et al. | Sep 2014 | A1 |
20140338273 | Stapleton | Nov 2014 | A1 |
20140341645 | Liu | Nov 2014 | A1 |
20150052834 | Gies et al. | Feb 2015 | A1 |
20150060620 | Smeja | Mar 2015 | A1 |
20150107168 | Kobayashi | Apr 2015 | A1 |
20150129517 | Wildes | May 2015 | A1 |
20150200620 | Haddock et al. | Jul 2015 | A1 |
20150214884 | Rizzo | Jul 2015 | A1 |
20150288320 | Stearns et al. | Oct 2015 | A1 |
20160025262 | Stearns et al. | Jan 2016 | A1 |
20160049901 | Muther et al. | Feb 2016 | A1 |
20160060869 | Smeja | Mar 2016 | A1 |
20160111835 | Nayar | Apr 2016 | A1 |
20160111997 | Ganshaw et al. | Apr 2016 | A1 |
20160111998 | Schmid | Apr 2016 | A1 |
20160130815 | Menegoli | May 2016 | A1 |
20160153184 | Haddock | Jun 2016 | A1 |
20160160524 | Malins | Jun 2016 | A1 |
20160176105 | Stanley | Jun 2016 | A1 |
20160177984 | Kovacs | Jun 2016 | A1 |
20170067258 | Stearns et al. | Mar 2017 | A1 |
20170073974 | Kovacs | Mar 2017 | A1 |
20170107723 | Stearns et al. | Apr 2017 | A1 |
20170237386 | Stephan et al. | Aug 2017 | A1 |
20170302221 | Jasmin | Oct 2017 | A1 |
20180013382 | Smeja | Jan 2018 | A1 |
20190049151 | Harris et al. | Feb 2019 | A1 |
20190106885 | Stearns et al. | Apr 2019 | A1 |
20190123460 | Ash et al. | Apr 2019 | A1 |
20190165717 | Haddock et al. | May 2019 | A1 |
20190169856 | Haddock et al. | Jun 2019 | A1 |
20190226214 | Van Leuven | Jul 2019 | A1 |
20190273460 | Kovacs | Sep 2019 | A1 |
20190285224 | McKechnie et al. | Sep 2019 | A1 |
20190296689 | Haddock et al. | Sep 2019 | A1 |
20190330853 | Van Leuven | Oct 2019 | A1 |
20190345719 | Header | Nov 2019 | A1 |
20190363667 | Braunstein et al. | Nov 2019 | A1 |
20190368780 | Haddock et al. | Dec 2019 | A1 |
20190372501 | Wada et al. | Dec 2019 | A1 |
20200032523 | Haddock et al. | Jan 2020 | A1 |
20200144959 | Stearns et al. | May 2020 | A1 |
20200252023 | Stearns et al. | Aug 2020 | A1 |
20200313611 | Ash et al. | Oct 2020 | A1 |
20200318349 | Stearns et al. | Oct 2020 | A1 |
20210028741 | Stearns et al. | Jan 2021 | A1 |
20210067085 | Stearns et al. | Mar 2021 | A1 |
20210079947 | Ash et al. | Mar 2021 | A1 |
20210104973 | Stearns et al. | Apr 2021 | A1 |
20210159843 | Stearns et al. | May 2021 | A1 |
20210167720 | Stearns et al. | Jun 2021 | A1 |
20210184626 | Yang et al. | Jun 2021 | A1 |
20210194157 | Ash et al. | Jun 2021 | A1 |
20210265940 | Stearns et al. | Aug 2021 | A1 |
20210376781 | Stearns et al. | Dec 2021 | A1 |
20210376782 | Stearns et al. | Dec 2021 | A1 |
20210388618 | Stearns et al. | Dec 2021 | A1 |
Number | Date | Country |
---|---|---|
13076 | Aug 1903 | AT |
26329 | Nov 1906 | AT |
298762 | May 1972 | AT |
2005201707 | Nov 2006 | AU |
2009101276 | Jan 2010 | AU |
2009245849 | Jun 2010 | AU |
2014362215 | Jun 2015 | AU |
2017203660 | Oct 2018 | AU |
2016294152 | Dec 2018 | AU |
2704915 | Sep 2011 | CA |
204783 | May 1939 | CH |
388590 | Feb 1965 | CH |
469159 | Feb 1969 | CH |
671063 | Jul 1989 | CH |
202025767 | Nov 2011 | CN |
202577780 | Dec 2012 | CN |
103774795 | May 2014 | CN |
108105222 | Jun 2018 | CN |
298762 | Apr 1916 | DE |
941690 | Apr 1956 | DE |
2126082 | Dec 1972 | DE |
2523087 | Nov 1976 | DE |
2556095 | Jun 1977 | DE |
3326223 | Apr 1984 | DE |
3617225 | Nov 1987 | DE |
3723020 | Jan 1989 | DE |
3728831 | Jan 1989 | DE |
9112788 | Dec 1991 | DE |
4115240 | Oct 1992 | DE |
10056177 | May 2002 | DE |
10062697 | Jul 2002 | DE |
10344202 | Apr 2004 | DE |
202005006951 | Aug 2005 | DE |
102005002828 | Aug 2006 | DE |
202006015336 | Dec 2006 | DE |
202007002252 | Apr 2007 | DE |
202007018367 | Jul 2008 | DE |
102007036206 | Feb 2009 | DE |
202009010984 | Dec 2009 | DE |
102008032985 | Jan 2010 | DE |
202015102936 | Sep 2016 | DE |
202012013476 | Feb 2017 | DE |
0481905 | Apr 1992 | EP |
0722023 | Jul 1996 | EP |
0952272 | Oct 1999 | EP |
1126098 | Aug 2001 | EP |
1447494 | Aug 2004 | EP |
1804008 | Jul 2007 | EP |
2105971 | Sep 2009 | EP |
2327942 | Jun 2011 | EP |
2375185 | Oct 2011 | EP |
2746695 | Jun 2014 | EP |
2528166 | Sep 2015 | EP |
3092350 | Apr 2019 | EP |
3364124 | Oct 2019 | EP |
3552307 | Oct 2019 | EP |
3361183 | Dec 2019 | EP |
469159 | Jul 1914 | FR |
1215468 | Apr 1960 | FR |
2468209 | Apr 1981 | FR |
2515236 | Apr 1983 | FR |
2638772 | May 1990 | FR |
2697060 | Apr 1994 | FR |
2793827 | Nov 2000 | FR |
2950375 | Mar 2011 | FR |
2971577 | Aug 2012 | FR |
2997169 | Apr 2014 | FR |
3074369 | Dec 2019 | FR |
2149829 | Jun 1985 | GB |
2364077 | Jan 2002 | GB |
2430946 | Apr 2007 | GB |
2465484 | May 2010 | GB |
2476104 | Jun 2011 | GB |
S56-158486 | Dec 1981 | JP |
H03-166452 | Jul 1991 | JP |
H04-73367 | Mar 1992 | JP |
H04-366294 | Dec 1992 | JP |
H05-346055 | Dec 1993 | JP |
H08-189150 | Jul 1996 | JP |
09177272 | Jul 1997 | JP |
H09-256562 | Sep 1997 | JP |
11172861 | Jun 1999 | JP |
2000120235 | Jan 2000 | JP |
2000303638 | Jan 2000 | JP |
2000-179106 | Jun 2000 | JP |
2000179106 | Jun 2000 | JP |
2000-234423 | Aug 2000 | JP |
2000-303638 | Oct 2000 | JP |
2001193231 | Jul 2001 | JP |
2001-303724 | Oct 2001 | JP |
2001303724 | Oct 2001 | JP |
2002-146978 | May 2002 | JP |
2002180609 | Jun 2002 | JP |
2003-096986 | Apr 2003 | JP |
2003-155803 | May 2003 | JP |
2003213854 | Jul 2003 | JP |
2004-060358 | Feb 2004 | JP |
2004-068270 | Mar 2004 | JP |
2004-092134 | Mar 2004 | JP |
2004-124583 | Apr 2004 | JP |
2004124583 | Apr 2004 | JP |
2004-156326 | Jun 2004 | JP |
2004-264009 | Sep 2004 | JP |
2004-278145 | Oct 2004 | JP |
2005-171623 | Jun 2005 | JP |
2006-097291 | Apr 2006 | JP |
2009185599 | Jan 2009 | JP |
2009179955 | Aug 2009 | JP |
2011-069130 | Apr 2011 | JP |
2011-236611 | Nov 2011 | JP |
2012144903 | Aug 2012 | JP |
6033922 | Nov 2016 | JP |
2018-091009 | Jun 2018 | JP |
100957530 | May 2010 | KR |
2017016056 | Aug 2018 | MX |
2021378 | Jan 2020 | NL |
2021379 | Jan 2020 | NL |
2021380 | Jan 2020 | NL |
2021740 | May 2020 | NL |
3066398 | Dec 2019 | PT |
3066399 | Dec 2019 | PT |
WO 9630606 | Oct 1996 | WO |
WO 9708399 | Mar 1997 | WO |
WO 9955982 | Nov 1999 | WO |
WO 0139331 | May 2001 | WO |
WO 03098126 | Nov 2003 | WO |
WO 2008021714 | Feb 2008 | WO |
WO 2008028151 | Mar 2008 | WO |
WO 2010112049 | Oct 2010 | WO |
WO 2010113003 | Oct 2010 | WO |
WO 2010121830 | Oct 2010 | WO |
WO 2010140878 | Dec 2010 | WO |
WO 2011019460 | Feb 2011 | WO |
WO 2011154019 | Dec 2011 | WO |
WO 2012014203 | Feb 2012 | WO |
WO 2012017711 | Feb 2012 | WO |
WO 2012048056 | Apr 2012 | WO |
WO 2013009375 | Jan 2013 | WO |
WO 2014194576 | Dec 2014 | WO |
WO 2015061113 | Apr 2015 | WO |
WO 2016198305 | Dec 2016 | WO |
WO 2018169391 | Sep 2018 | WO |
WO 2019239024 | Dec 2019 | WO |
WO 2020022879 | Jan 2020 | WO |
WO 2020022880 | Jan 2020 | WO |
WO 2020162746 | Aug 2020 | WO |
WO 2020187472 | Sep 2020 | WO |
WO 2021043407 | Mar 2021 | WO |
WO 2021061866 | Apr 2021 | WO |
WO 2021086185 | May 2021 | WO |
WO 2021102062 | May 2021 | WO |
WO 2021119458 | Jun 2021 | WO |
Entry |
---|
“ADJ Heavy Duty Lighting C-clamp,” Sweetwater, 2011, 3 pages [retrieved online from: http://web.archive.org/web/20111112045516/http://www.sweetwater.com/store/detail/CClamp/]. |
“Aluminum,” Wikipedia, Jul. 3, 2016, 21 pages [retrieved Oct. 3, 2017 from: en.wikipedia.org/w1ki/Aluminium]. |
“ClampFit-H Product Sheet,” Schletter GmbH, Kirchdorf, Germany, Nov. 2015, 2 pages. |
IDEEMATEC Tracking & Mounting Systems [online], Apr. 2008, [retrieved Mar. 6, 2012], Retrieved from http://www.ideematec.de. |
“Kee Walk—Roof Top Walkway,” Simplified Safety, 2011, 3 pages [retrieved online from: https://web.archive.org/web/20120207115154/http://simplifiedsafety.com/solutions/keewalk-rooftop-walkway/]. |
“KeeLine® The Safety Solution for Horizontal Life Lines,” Kee Safety, Ltd. 2012, 2 pages [retrieved online from: https://web.archive.org/web/20120305120830/http://keesafety.co.uk/products/kee_line]. |
“Miller Fusion Roof Anchor Post,” Miller Fall Protection, 2011, 3 pages [retrieved online from: https://web.archive.org/web/20111211154954/www.millerfallprotection.com/fall-protection-products/roofing-products/miller-fusion-roof-anchor-post]. |
“New ‘Alzone 360 system’”, Arrid, 2008, 34 pages [retrieved online from: https://web.archive.org/web/20120317120735/www.arrid.com.au/?act=racking_parts]. |
“Oil Canning—Solutions,” Pac-Clad, 2001, 2 pages [retrieved online from: pac-clad.com/aiapresentation/sld021.htm]. |
“Oil Canning,” Metal Construction Association, 2003, Technical Bulletin #95-1060, 2 pages. |
“REES—Snow Retention Systems,” Weerbewind, 2010, 3 pages [retrieved online from: https://web.archive.org/web/20100310075027/www.rees-oberstdorf.de/en/products/snow-retention-system.html]. |
“Solar mount. System,” Schletter GmbH, 2012, 1 page [retrieved online from: https://web.archive.org/web/20120316154604/www.schletter.de/152-1-Solar-mounting-systems.html]. |
Gallo “Oil-Canning,” Metal Roofing Alliance, Ask-the-experts forum, Jun. 7, 2005, 4 pages [retrieved online from: www.metalroofingalliance.net/v2/forums/printview.cfm?action=mboard.members/viewmessages&ForumTopicID=4921&ForumCategoryID=1]. |
Haddock “History and Materials,” Metalmag, Metal roofing from A (Aluminum) to Z (Zinc)—Part I, Sep./Oct. 2001, 4 pages. |
Haddock “Metallic Coatings for Carbon Steel,” Metalmag, Metal roofing from a (Aluminum) to Z (Zinc)—Part II, Nov./Dec. 2001, 8 pages. |
International Search Report and Written Opinion for International (PCT) Patent Application No. PCT/US2012/070653, dated May 31, 2013 11 pages. |
International Preliminary Report on Patentability for International (PCT) Patent Application No. PCT/US2012/070653, dated Jul. 10, 2014 8 pages. |
Official Action for U.S. Appl. No. 13/720,461, dated May 23, 2014 19 pages. |
Official Action for U.S. Appl. No. 13/720,461, dated Oct. 8, 2015 23 pages. |
Official Action for U.S. Appl. No. 13/720,461, dated May 19, 2016 20 pages. |
Official Action for U.S. Appl. No. 15/628,927, dated Apr. 12, 2018 15 pages. |
Official Action for U.S. Appl. No. 15/628,927, dated Dec. 14, 2018 19 pages. |
Official Action for U.S. Appl. No. 15/628,927, dated Apr. 5, 2019 13 pages. |
Official Action for U.S. Appl. No. 15/628,927, dated Oct. 10, 2019 12 pages. |
Notice of Allowance for U.S. Appl. No. 15/628,927, dated Jan. 23, 2020 9 pages. |
“Wiley Grounding & Bonding Solutions,” Hubbell, 2020, 2 pages [retrieved online from: www.hubbell.com/wiley/en/grounding-and-bonding]. |
“Ace Clamp Cut Sheet | 5031 Z1-2,” Ace Clamp, Nov. 2018, 1 page. |
“Universal Clamps Brochure for Web,” Universal Clamps, 2020, 2 pages. |
“S-5! WindClamp™ Install,” Metal Roof Innovations, Ltd., 2014, 1 page. |
“Wind Clamps for Metal Roofs,” Metal Roof Innovations, Ltd., 2017, Version Aug. 17, 2017, 2 pages. |
“Wind Clamp Ultra DEK,” Metal Roof Innovations, Ltd., Mar. 7, 2011, Drawing No. WC14-A-0-A_CCD, 1 page. |
“Wind Clamp Double LOK,” Metal Roof Innovations, Ltd., Mar. 7, 2011, Drawing No. WC15-A-0-A_CCD, 1 page. |
U.S. Appl. No. 14/257,747, filed Apr. 21, 2014 now U.S. Pat. No. 9,085,900. |
U.S. Appl. No. 07/912,845, filed Jul. 13, 1992 now U.S. Pat. No. 5,228,248. |
U.S. Appl. No. 08/091,176, filed Jul. 13, 1993 now U.S. Pat. No. 5,483,772. |
U.S. Appl. No. 08/482,274, filed Jun. 7, 1995 now U.S. Pat. No. 5,715,640. |
U.S. Appl. No. 08/987,363, filed Dec. 9, 1997 now U.S. Pat. No. 5,933,588. |
U.S. Appl. No. 09/312,013, filed May 14, 1999 now U.S. Pat. No. 6,164,033. |
U.S. Appl. No. 09/698,358, filed Oct. 27, 2000 now U.S. Patent No. |
U.S. Appl. No. 10/138,9057, filed Apr. 8, 2002 now U.S. Pat. No. 6,718,718. |
U.S. Appl. No. 10/824,320, filed Apr. 13, 2004 now U.S. Patent No. |
U.S. Appl. No. 08/335,987, filed Nov. 8, 1994 now U.S. Pat. No. 5,694,721. |
U.S. Appl. No. 08/336,288, filed Nov. 8, 1994 now U.S. Pat. No. 5,491,931. |
U.S. Appl. No. 09/313,105, filed Mar. 17, 1999 now U.S. Pat. No. 6,536,729. |
U.S. Appl. No. 09/313,103, filed May 17, 1999 now U.S. Pat. No. 6,470,629. |
U.S. Appl. No. 09/758,805, filed Jan. 11, 2001 now U.S. Patent No. |
U.S. Appl. No. 10/746,546, filed Dec. 23, 2003 now U.S. Pat. No. 7,100,338. |
U.S. Appl. No. 10/746,596, filed Dec. 23, 2003 now U.S. Pat. No. 7,013,612. |
U.S. Appl. No. 10/818,469, filed Apr. 5, 2004 now U.S. Patent No. |
U.S. Appl. No. 10/823,410, filed Apr. 13, 2004 now U.S. Pat. No. 7,703,256. |
U.S. Appl. No. 12/767,983, filed Apr. 27, 2010 now U.S. Patent No. |
U.S. Appl. No. 12/960,679, filed Dec. 6, 2010 now U.S. Patent No. |
U.S. Appl. No. 11/325,704, filed Jan. 5, 2006 now U.S. Patent No. |
U.S. Appl. No. 11/425,338, filed Jun. 20, 2006 now U.S. Patent No. |
U.S. Appl. No. 12/707,724, filed Feb. 18, 2010 now U.S. Patent No. |
U.S. Appl. No. 11/759,172, filed Jun. 6, 2007 now US. Pat. No. 7,758,011. |
U.S. Appl. No. 12/832,281, filed Jul. 8, 2010 now U.S. Pat. No. 8,430,372. |
U.S. Appl. No. 13/857,759, filed Apr. 5, 2013 now U.S. Patent No. |
U.S. Appl. No. 14/697,387, filed Apr. 27, 2015 now U.S. Patent No. |
U.S. Appl. No. 14/789,607, filed Jul. 1, 2015 now U.S. Pat. No. 9,732,512. |
U.S. Appl. No. 15/471,179, filed Mar. 28, 2017 now U.S. Pat. No. 10,053,856. |
U.S. Appl. No. 15/663,081, filed Jul. 28, 2017 now U.S. Pat. No. 10,443,896. |
U.S. Appl. No. 12/629,179, filed Dec. 2, 2009 now U.S. Patent No. |
U.S. Appl. No. 12/542,132, filed Aug. 17, 2009 now U.S. Pat. No. 8,312,678. |
U.S. Appl. No. 13/667,816, filed Nov. 2, 2012 now U.S. Pat. No. 8,656,649. |
U.S. Appl. No. 14/153,925, filed Jan. 13, 2014 now U.S. Pat. No. 9,222,263. |
U.S. Appl. No. 13/403,463, filed Feb. 23, 2012 now U.S. Pat. No. 8,833,714. |
U.S. Appl. No. 14/444,405, filed Jul. 28, 2014 now U.S. Patent No. |
U.S. Appl. No. 14/500,919, filed Sep. 29, 2014 now U.S. Pat. No. 9,611,652. |
U.S. Appl. No. 15/452,388, filed Mar. 7, 2017 now U.S. Patent No. |
U.S. Appl. No. 15/621,092, filed Jun. 13, 2017 now U.S. Pat. No. 10,077,562. |
U.S. Appl. No. 15/621,739, filed Jun. 13, 2017 now U.S. Pat. No. 10,106,987. |
U.S. Appl. No. 16/129,606, filed Sep. 12, 2018 now U.S. Patent No. |
U.S. Appl. No. 16/592,521, filed Oct. 3, 2019 now U.S. Patent No. |
U.S. Appl. No. 14/030,615, filed Sep. 18, 2013 now U.S. Patent No. |
U.S. Appl. No. 14/005,784, filed Jun. 13, 2014 now U.S. Pat. No. 9,530,916. |
U.S. Appl. No. 15/386,911, filed Dec. 21, 2016 now U.S. Patent No. |
U.S. Appl. No. 14/205,613, filed Mar. 12, 2014 now U.S. Pat. No. 9,147,785. |
U.S. Appl. No. 14/840,206, filed Aug. 31, 2015 now U.S. Pat. No. 9,608,559. |
U.S. Appl. No. 15/470,533, filed Mar. 27, 2017 now U.S. Pat. No. 10,103,682. |
U.S. Appl. No. 16/139,853, filed Sep. 24, 2018 now U.S. Patent No. |
U.S. Appl. No. 16/754,519, filed Apr. 8, 2020 now U.S. Patent No. |
U.S. Appl. No. 10/810,114, filed Mar. 25, 2004 now U.S. Pat. No. 7,513,080. |
U.S. Appl. No. 13/545,808, filed Jul. 10, 2012 now U.S. Patent No. |
U.S. Appl. No. 13/724,976, filed Dec. 21, 2012 now U.S. Pat. No. 9,086,185. |
U.S. Appl. No. 14/789,714, filed Jul. 1, 2015 now U.S. Patent No. |
U.S. Appl. No. 13/712,474, filed Dec. 12, 2012 now U.S. Pat. No. 8,844,234. |
U.S. Appl. No. 14/469,153, filed Aug. 26, 2014 now U.S. Patent No. |
U.S. Appl. No. 16/539,960, filed Aug. 13, 2019 now U.S. Patent No. |
U.S. Appl. No. 15/798,023, filed Oct. 30, 2017 now U.S. Pat. No. 10,640,980. |
U.S. Appl. No. 13/965,441, filed Aug. 13, 2013 now U.S. Pat. No. 8,925,263. |
U.S. Appl. No. 14/558,356, filed Dec. 2, 2014 now U.S. Pat. No. 9,306,490. |
U.S. Appl. No. 16/821,885, filed Mar. 17, 2020 now U.S. Patent No. |
U.S. Appl. No. 16/360,923, filed Mar. 21, 2019 now U.S. Patent No. |
U.S. Appl. No. 16/714,060, filed Dec. 13, 2019 now U.S. Patent No. |
U.S. Appl. No. 13/720,461, filed Dec. 19, 2012 now U.S. Patent No. |
U.S. Appl. No. 15/628,927, filed Jun. 21, 2017 now U.S. Pat. No. 10,634,175. |
U.S. Appl. No. 12/855,850, filed Aug. 13, 2010 now U.S. Pat. No. 10,054,336. |
U.S. Appl. No. 12/856,827, filed Aug. 16, 2010 now U.S. Pat. No. 9,920,958. |
U.S. Appl. No. 12/856,844, filed Aug. 16, 2010 now U.S. Pat. No. 8,627,617. |
U.S. Appl. No. 16/106,299, filed Aug. 21, 2018 now U.S. Pat. No. 10,502,457. |
U.S. Appl. No. 08/383,477, filed Feb. 2, 1995 now U.S. Patent No. |
U.S. Appl. No. 08/285,280, filed Aug. 1, 1994 now U.S. Pat. No. 5,557,903. |
“Aerocompact® CompactMETAL TR Checklist,” Aerocompact, Aug. 30, 2021, CL TR ENG EU V1, 2 pages [retrieved online from: cdn.intelligencebank.com/eu/share/8MnR/YJMd/ZBPL4/original/AEROCOMPACT_CL_TR_ENG _V1_WEB]. |
“Aerocompact® CompactMETAL TR,” Aerocompact, Sep. 2, 2021, PB TR ENG EU V1, 3 pages[retrieved online from: cdn.intelligencebank.com/eu/share/8MnR/qMBXP/VYrWa/original/AEROCOMPACT_Leaflet_TR_ENG_V1_WEB]. |
“CompactMETAL TR59 | TR74 Assembly Instructions,” Aerocompact, Sep. 2021, 27 pages. |
“ERK-TRB-C16 RiverClack Roofing Profile Interface,” Enerack, 2021, 2 pages [retrieved online from: www.enerack.com/erk-trb-c16-riverclack-roofing-profile-interface-p00231p1.html]. |
“Grounding Clip for Electrical Protection,” ARaymond, 2016, 2 pages. |
“Installation Instructions for Rayvolt®—Grounding clip for Framed PV Modules,” ARaymond, Feb. 2016, Version 2.2, 1 page. |
“Standing Seam RiverClack Clamp,” Shanghai Woqin New Energy Technology Co., LTD., 2018, 4 pages [retrieved online on Mar. 23, 2022 from: www.wochnmount.com/Details.html?product_id=36]. |
Number | Date | Country | |
---|---|---|---|
20200217339 A1 | Jul 2020 | US |
Number | Date | Country | |
---|---|---|---|
61581305 | Dec 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15628927 | Jun 2017 | US |
Child | 16824651 | US | |
Parent | 13720461 | Dec 2012 | US |
Child | 15628927 | US |