Mounting device for nail strip panels

Information

  • Patent Grant
  • 12018861
  • Patent Number
    12,018,861
  • Date Filed
    Monday, May 16, 2022
    2 years ago
  • Date Issued
    Tuesday, June 25, 2024
    9 months ago
Abstract
A mounting device (10) is disclosed having a one-piece body (11). A slot (20) extends into this body (11), and is defined by a slot base (22) and a pair of spaced slot sidewalls (24a, 24b) that each extend from the slot base (22). The slot sidewalls (24a, 24b) are disposed in non-parallel relation to each other.
Description
FIELD OF THE INVENTION

The present invention generally relates to mounting devices and, more particularly, to mounting devices that may be used with nail strip panels.


BACKGROUND

Metal panels are being increasingly used to define building surfaces such as roofs and sidewalls. One type of metal panel is a standing seam panel, where portions of adjacent standing seam panels of the building surface are interconnected/nested in a manner that defines a standing seam. Standing seam panels are expensive compared to other metal panels, and building surfaces defined by metal panels may be more costly than other types of building surface constructions.


It is often desirable to install various types of structures on building surfaces, such as heating, air conditioning, and ventilation equipment. Installing structures on standing seam panel building surfaces in a manner that punctures the building surface at one or more locations is undesirable in a number of respects. One is simply the desire to avoid puncturing what is a relatively expensive building surface. Another is that increasing the number of locations where a metal panel building surface is punctured may increase the potential for leakage and/or corrosion.


SUMMARY

A first aspect of the present invention is directed to a mounting device that is adapted for installation on a standing seam of a panel assembly. This mounting device includes a mounting body. A slot extends into this mounting body and is defined by first slot sidewall, a second slot sidewall, and a slot base, where the first and second slot sidewalls are disposed in non-parallel relation to one another (i.e., the first slot sidewall is not parallel to the second slot sidewall), and where the first and second slot sidewalls are always maintained in a fixed position relative to one another (e.g., the position/orientation of the first and second slot sidewalls is not adjustable). At least one seam fastener may be extended through the mounting body and into the slot (e.g., to retain a standing seam within the slot). At least one mounting fastener may be extended at least into the mounting body (e.g., to mount one or more attachments to the mounting body).


A number of feature refinements and additional features are applicable to the first aspect of the present invention. These feature refinements and additional features may be used individually or in any combination. The following discussion is applicable to the first aspect, up to the start of the discussion of a second aspect of the present invention.


The mounting body may be of one-piece construction. For instance, the mounting body may be of an integral construction (e.g., an extruded part). The mounting body may be characterized as lacking any joints of any kind. Each portion of the mounting body may be characterized as always being maintained in a fixed position relative to a remainder of the mounting body (e.g., by having the mounting body be of one-piece construction; such that the mounting body itself includes no separable parts). The mounting body may be formed from any appropriate material or combination of materials (e.g., a metal alloy).


The first and second slot sidewalls may each include at least one flat or planar section. The entirety of the second slot sidewall may be in the form of a single flat/planar surface. The first slot sidewall may include a first nose or projection that extends in a direction in which the second slot sidewall is spaced from the first slot sidewall. However, this first nose does not extend all the way to the second slot sidewall (e.g., to provide a continual opening to the slot; such that the mounting body may be positioned over/onto a standing seam of a panel assembly via the noted slot). A recess or depression may be incorporated on the first slot sidewall in alignment with each seam fastener that extends through the second slot sidewall and into the slot. Other than any such first nose and/or recess(s), the remainder of the first slot sidewall may be in the form of a single flat/planar surface.


The second slot sidewall may include a second nose or projection that extends in a direction in which the first slot sidewall is spaced from the second slot sidewall. However, this second nose does not extend all the way to the first slot sidewall (e.g., to provide a continual opening to the slot; such that the mounting body may be positioned over/onto a standing seam of a panel assembly via the noted slot). Other than this second nose, the remainder of the second slot sidewall may be in the form of a single flat/planar surface. In the case where the first slot sidewall includes the noted first nose and where the second slot sidewall includes the noted second nose, each such nose may define the lowermost extreme of the corresponding slot sidewall when the depth dimension of the slot coincides with the vertical dimension, and the first nose (first slot sidewall) may be disposed at a lower elevation than the second nose (second slot sidewall).


A first included angle may exist between the slot base and the first slot sidewall. A second included angle may exist between the slot base and the second slot sidewall. The magnitudes of the first and second included angles may be different from one another. The magnitude of the first included angle may be larger than the magnitude of the second included angle. In one embodiment, the first included angle is greater than 90° while the second included angle is at least substantially 90°. One embodiment has this first included angle being within a range of about 100° to about 110°. Another embodiment has this first included angle being about 105°.


Consider the case where a reference plane extends in the depth dimension of the slot (e.g., so as to intersect the slot base and be disposed between and in spaced relation to each of the first and second slot sidewalls). The first slot sidewall may be characterized as extending both away from the slot base and away from this reference plane (e.g., the first slot sidewall may diverge from this reference plane when proceeding away from the slot base), while the second slot sidewall may be characterized as extending away from the slot base in at least substantially parallel relation to this reference plane.


The spacing between the first and second slot sidewalls may progressively increase when proceeding away from the slot base. The spacing between the first and second slot sidewalls may progressively and continually increase proceeding away from the slot base until reaching one of the above-noted noses, where the spacing between the first and second slot sidewalls would be then be reduced.


The first and second slot sidewalls may be characterized as terminating at different elevations when a depth dimension of the slot coincides with a vertical dimension. The “side” of the mounting body that incorporates the first slot sidewall may be characterized as being “taller” than the “side” of the mounting body that incorporates the second slot sidewall when a depth dimension of the slot coincides with a vertical dimension.


The first slot sidewall may be characterized as extending from the slot base to a first edge (where the above-noted first nose may define/include this first edge), while the second slot to sidewall may be characterized as extending from the slot base to a second edge (where the above-noted second nose may define/include this second edge). In one embodiment, the first edge of the first slot sidewall is spaced from the slot base by a first distance when measured in a first dimension that is orthogonal to the slot base, while the second edge of the second slot sidewall is spaced from the slot base by a second distance when measured in this same first dimension, where the second distance is less than the first distance. In one embodiment, the first edge of the first slot sidewall is spaced a first distance from a reference plane that contains at least a substantial portion of an upper surface of the mounting body (when measured in a first dimension that is orthogonal to this reference plane), while the second edge of the second slot sidewall is spaced a second distance from this same reference plane (when measured in this same first dimension), where the second distance is less than the first distance. The noted “first dimension” may correspond with the vertical dimension when the depth dimension of the slot coincides with this vertical dimension.


The mounting body may include an upper surface and an oppositely disposed lower surface, where the upper surface includes at least one flat section, and where the lower surface incorporates the above-noted slot (e.g., the depth dimension of the slot may be characterized as proceeding in the direction of this upper surface of the mounting body, where the slot base is spaced from the upper surface of the mounting body such that the slot does not extend entirely through the mounting body). The first slot sidewall may be characterized as extending from the slot base and at least generally away from the second slot sidewall, while the second slot sidewall may be characterized as being oriented at least substantially orthogonal to a reference plane that contains the noted flat section(s) of the upper surface (this reference plane could contain at least a substantial portion of the upper surface of the mounting body). Such a first slot sidewall may include the above-noted first nose, where this first nose is spaced further from the slot base than a remainder of the first slot sidewall.


A second aspect of the present invention is directed to a mounting device that is adapted for installation on a standing seam of a panel assembly. This mounting device includes a one-piece mounting body (e.g., such that the mounting body itself includes no separable parts) having an upper surface and an oppositely disposed lower surface, where the upper surface includes at least one flat section, and where the lower surface incorporates a slot. This slot extends into the mounting body and is defined by first slot sidewall, a second slot sidewall, and a slot base that extends between the first and second slot sidewalls. The first slot sidewall extends from the base and at least generally away from the second slot sidewall until reaching a first nose or projection, which then extends back in a direction that the second slot sidewall is spaced from the first slot sidewall. The second slot sidewall is oriented at least substantially orthogonal to a reference plane that contains the noted flat section(s) of the upper surface (at least a substantial portion of the upper surface of the mounting body could be contained within this reference plane). The first nose of the first slot sidewall may be disposed at a lower elevation than a lowermost edge of the second slot sidewall when the noted reference plane associated with the flat section(s) of the upper surface is horizontally disposed and further is disposed vertically above the slot base. At least one seam fastener may be extended through the mounting body and into the slot (e.g., to retain a standing seam within the slot). At least one mounting fastener may be extended into the mounting body (e.g., to mount one or more attachments to the mounting body).


The various features of the mounting device of the first aspect may be used in conjunction with the second aspect, individually or in any combination.


The mounting devices of each of the first and second aspects may be used in conjunction with a panel assembly defined by a plurality of nail strip panels. Each such nail strip panel may include a first seam rib and a second seam rib. Nesting the first seam rib on one nail strip panel with the second seam rib of another nail strip panel defines a standing seam. At least an upper portion of this standing seam may be received in the slot of the above-noted types of mounting devices. A lower portion of such a seam may include a recess, and the above-noted nose on the first slot sidewall may extend into this recess (e.g., to provide resistance to a “lifting off” of the mounting device relative to the standing seam).


Any feature of any other various aspects of the present invention that is intended to be limited to a “singular” context or the like will be clearly set forth herein by terms such as “only,” “single,” “limited to,” or the like. Merely introducing a feature in accordance with commonly accepted antecedent basis practice does not limit the corresponding feature to the singular (e.g., indicating that the mounting device includes “a seam fastener” alone does not mean that the mounting device includes only a single seam fastener). Moreover, any failure to use phrases such as “at least one” also does not limit the corresponding feature to the singular (e.g., indicating that a mounting device includes “a seam fastener” alone does not mean that the mounting device includes only a single seam fastener). Use of the phrase “at least generally” or the like in relation to a particular feature encompasses the corresponding characteristic and insubstantial variations thereof (e.g., indicating that a surface is at least generally flat encompasses the surface being flat). Finally, a reference of a feature in conjunction with the phrase “in one embodiment” does not limit the use of the feature to a single embodiment.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1 is a perspective view of one embodiment of a mounting device for use with nail strip panels.



FIG. 2 is an end view of the mounting device of FIG. 1.



FIG. 3 is an end view of the mounting device of FIG. 1, positioned on a standing seam of a panel assembly defined by multiple nail strip panels of a first configuration.



FIG. 4 is a perspective view of the mounting device of FIG. 1, positioned on a standing seam of a panel assembly of the type presented in FIG. 3.



FIG. 5 is a perspective view of another embodiment of a mounting device for nail strip panels.



FIG. 6 is a perspective view of the mounting device of FIG. 5, positioned on a seam of a panel assembly defined by multiple nail strip panels of a second configuration.



FIG. 7 is an enlarged end view of a standing seam from the panel assembly of FIG. 6.





DETAILED DESCRIPTION

One embodiment of a mounting device is illustrated in FIGS. 1 and 2, and is identified by reference numeral 10. This mounting device 10 is in the form of a mounting body 11, at least one mounting fastener 34, and at least one seam fastener 36. The mounting body 11 may be of one-piece construction (e.g., an extruded part). The mounting body 11 may be characterized as lacking any joints of any kind. The mounting body 11 may be configured so as to have no separable parts.


The mounting body 11 may be formed from any appropriate material or combination of materials (e.g., a metal alloy), and includes an upper surface 12, an oppositely disposed lower surface 16, a pair of oppositely disposed side surfaces 14, and a pair of oppositely disposed ends 18. The spacing between the ends 18 coincides with a length dimension for the mounting body 11, the spacing between the side surfaces 14 coincides with a width dimension for the mounting body 11, and the spacing between the upper surface 12 and lower surface 16 coincides with a height or depth dimension for the mounting body 11 (as well as for slot 20, discussed below). The upper surface 12 of the mounting body 11 includes at least one flat section. A substantial portion of the upper surface 12 is flat in the illustrated embodiment—all except the transition between the upper surface 12 and each of the two side surfaces 14, which may be rounded and/or chamfered. A single reference plane may contain at least a substantial portion of the upper surface 12 of the mounting body 11. In any case, typically the mounting device 10 will be installed on a panel assembly such that its upper surface 12 projects at least generally upwardly to accommodate supporting one or more attachments that may be appropriately secured to the mounting body 11. In this regard, the upper surface 12 may include at least one threaded hole 30 on a flat section thereof (two in the illustrated embodiment; any appropriate number of threaded holes 30 may be utilized; multiple threaded holes 30 typically being spaced along the length dimension of the mounting body 11) for receiving a corresponding mounting fastener 34 (e.g., the mounting fastener 34 may be threaded into a pre-defined threaded hole 30 on a flat section of the upper surface 12 and that extends into the mounting body 11). Another option is for the mounting fastener 34 to be self-tapping (i.e., so as to not require a threaded hole in the mounting body 11 prior to initially installing the mounting fastener 34 on the mounting body 11).


The lower surface 16 of the mounting body 11 includes a slot 20 that extends between the two ends 18 of the mounting body 11, and it is located between the pair of side surfaces 14 of the mounting body 11. This slot 20 is defined by a slot base 22 and a pair of slot sidewalls 24a, 24b. The slot sidewalls 24a, 24b are spaced apart to receive at least an end section of a standing seam of a panel assembly (e.g., standing seam 52 of panel assembly 40, discussed below in relation to FIGS. 3 and 4). As the mounting body 11 is of one-piece construction, the first slot sidewall 24a is always maintained in a fixed position relative to the second slot sidewall 24b.


Each of the slot sidewalls 24a, 24b includes at least one flat section. In the illustrated embodiment, the entirety of the second slot sidewall 24b is flat or planar, while the entirety of the first slot sidewall 24a is also flat or planar other than for a nose or projection 28 located at a lower extreme thereof and for optional depressions or recesses (where each such recess is axially aligned with a seam fastener 36). Any such nose or projection 28 extends at least generally in the direction that the second slot sidewall 24b is spaced from the first slot sidewall 24a.


At least one threaded hole 32 (two in the illustrated embodiment; any appropriate number of threaded holes 32 may be utilized; multiple threaded holes 32 typically being spaced along the length dimension of the body 11) may extend from one of the side surfaces 14, through the body 11, and intersects the first slot sidewall or the second slot sidewall 24b. In the illustrated embodiment, the threaded hole(s) 32 intersect with the second slot sidewall 24b (e.g., it may be that no threaded holes 32 extend through the mounting body 11 to intersect with the first slot sidewall 24a).


An appropriate seam fastener 36 may be directed through a given threaded hole 32 of the mounting device 10 so as to extend into the slot 20 to engage a standing seam and secure the same against the opposing slot sidewall 24a or 24b (the first slot sidewall 24a in the illustrated embodiment). A cavity of any appropriate type may be included on this opposing slot sidewall 24a or 24b (the first slot sidewall 24a in the illustrated embodiment) to allow the aligned seam fastener 36 to deflect a corresponding portion of the standing seam into this cavity, although such may not be required in all instances. In any case and in one embodiment, the seam fastener 34 only interfaces with an exterior surface of a standing seam disposed in the slot 20. For instance, the end of the seam fastener 36 that interfaces with such a standing seam may be convex, rounded, or of a blunt-nosed configuration to provide a desirable interface with this standing seam (e.g., non-penetrating). Another option is for the seam fastener(s) 36 to be self-tapping (i.e., so as to not require a threaded hole prior to initially installing the seam fastener 34 on the body 11).


A number of characterizations may be made in relation to the slot 20 of the mounting device 10, and which may apply individually or in any combination. The first slot sidewall 24a and the second slot sidewall 24b are disposed other than in parallel relation—the first slot sidewall 24a is not parallel to the second slot sidewall 24b. The first slot sidewall 24a and the second slot sidewall 24b may be characterized as being disposed in different orientations.


A first included angle cu is defined between the slot base 22 and the first slot sidewall 24a (e.g., between a flat section of the slot base 22 and an adjacent flat section of the first slot sidewall 24a). In the illustrated embodiment, this included angle cu is greater than 90°. A second included angle α2 is defined between the slot base 22 and the second slot sidewall 24b (e.g., between a flat section of the slot base 22 and an adjacent flat section of the second slot sidewall 24b). In the illustrated embodiment, this included angle α2 is at least substantially 90°. The magnitude of the included angle cu is thereby greater than the magnitude of the included angle α2. One embodiment has the included angle cu being within a range of about 100° to about 110°. Another embodiment has the included angle cu being about 105°.



FIG. 2 illustrates a reference plane 60 that extends through the slot 20 at a location that is between the first slot sidewall 24a and the second slot sidewall 24b. The reference plane 60 may be orthogonal to one or more of the slot base 22 and the upper surface 12. The reference plane 60 may extend in the above-noted height or depth dimension for the mounting device 10. One characterization of the configuration of the slot 20 is that the first slot sidewall 24a extends from the slot base 22 and away from the reference plane 60, while the second slot sidewall 24b extends from the slot base 22 at least substantially parallel to this same reference plane 60.


The slot 20 may be characterized as having a variable width, including a continually variable width for at least a substantial portion of its depth (up to the nose 28 of first slot sidewall 24a). The spacing between the first slot sidewall 24a and the second slot sidewall 24b may progressively increase proceeding away from the slot base 22 up to the nose 28 of the first slot sidewall 24a. In one embodiment, the second slot sidewall 24b is disposed orthogonally to at least one of the upper surface 12 and the slot base 22, while the first slot sidewall 24a extends from the slot base 22 at least generally away from the second slot sidewall 24b.


The first slot sidewall 24a and the second slot sidewall 24b may be characterized as terminating at different elevations when the depth of the slot 20 extends in the vertical dimension. The up-and-down dimension in the view presented in FIG. 2 corresponds with this depth dimension for the slot 20. The width dimension of the slot 20 coincides with the spacing between the first slot sidewall 24a and the second slot sidewall 24b. The length dimension of the slot 20 coincides with the spacing between the ends 18 of the mounting body 11. The lower surface 16 at its intersection with the first slot sidewall 26a may be offset in the vertical dimension (when the depth of the slot 20 extends in the vertical dimension) from the lower surface 16 at its intersection with the second slot sidewall 26b.


The first slot sidewall 24a may be characterized as extending from the slot base 22 to a first/lower edge 26a, while the second slot sidewall 24b may be characterized as extending from the slot base 22 to a second/lower edge 26b. In the illustrated embodiment, the nose 28 includes the first edge 26a of the first slot sidewall 24a. The upper surface 12 and the first edge 26a of the first slot sidewall 24a are separated by a distance D1 measured in a first dimension (the vertical dimension in the view presented in FIG. 2, and that is orthogonal to a flat section of the upper surface 12), while the upper surface 12 and the second edge 26b of the second slot sidewall 24b are separated by a distance D2 measured in this same first dimension. As illustrated in FIG. 2, the distance D1 is greater than the distance D2. The spacing between the slot base 22 and the first edge 26a of the first slot sidewall 24a, measured in this same first dimension, is also greater than the spacing between the slot base 22 and the second edge 26b of the second slot sidewall 24b.



FIGS. 3 and 4 show the mounting device 10 positioned on a standing seam 52 of one embodiment of a panel assembly 40. The panel assembly 40 may be used to define any appropriate surface, including a roofing surface. The panel assembly 40 is defined by a plurality of what are commonly referred to as nail strip panels 42 or the like. Each nail strip panel 42 includes a nail strip flange 44, a left seam rib 46a (a rib used to define a seam 52), and a right seam rib 46b (a rib used to define a seam 52). The left seam rib 46a and right seam rib 46b of a given nail strip panel 42 are spaced in the width dimension of the nail strip panel 42. Each nail strip panel 42 may include one or more flat sections, as well as one or more other structures such as crests, minor ribs, intermediate ribs, pencil ribs, striations, fluting, or flutes.


The left nail strip panel 42 in FIGS. 3 and 4 would be secured to an underlying support structure (e.g., a deck) by extending a plurality of suitable fasteners (e.g., nails, screws) through the nail strip flange 44 (e.g., spaced along the length of the nail strip flange 44—the length dimension extending into the page in the view presented in FIG. 3) and into the underlying support structure. The left seam rib 46a for the right nail strip panel 42 illustrated in FIGS. 3 and 4 may then be positioned over the right seam rib 46b for the left nail strip panel 42 illustrated in FIGS. 3 and 4 to define a standing seam 52. Nail strip panels 42 may be installed in this manner to define a panel assembly 40 of a desired size (both in the length and width dimensions).


Each standing seam 52 of the panel assembly includes a recess 50 on one side thereof (the left side in the views of FIGS. 3 and 4). This recess 50 is defined below an end section 48 of the left seam rib 46a of the standing seam 52, a lower portion of the right seam rib 46b of this same standing seam 52, and a base of the nail strip panel 42 associated with the noted right seam rib 46b. The nose 28 on the lower portion of the first slot sidewall 24a may be directed into this recess 50 so as to be disposed under the end section 48 of the corresponding left seam rib 46a in the view shown in FIG. 3. This provides increased lift-off resistance for the mounting device 10 on this standing seam 52. One embodiment has the nose 28 extending a distance D3 (measured in the width dimension) of at least about 0.1″ from the adjacent flat portion of the first slot sidewall 24a. Another embodiment has this distance D3 being at least about 0.15″.



FIG. 5 illustrates a variation of the mounting device 10 of FIGS. 1-2. Corresponding components are identified by the same reference numeral. Those corresponding components that differ in at least some respect are identified by a “single prime” designation in FIG. 5. One difference between the mounting device 10′ of FIG. 5 and the mounting device 10 of FIGS. 1-2 is that the mounting device 10′ accommodates a single seam fastener 36 (versus the multiple seam fasteners 36 used by the mounting device 10 of FIGS. 1-2). Another difference is that the mounting device 10′ of FIG. 5 accommodates a single mounting fastener 34 (versus the multiple mounting fasteners 34 used by the mounting device 10 of FIGS. 1-2). As such, the mounting body 11′ of the mounting device 10′ may be characterized as being “shorter” in the length dimension (coinciding with the spacing between the ends 18) than the mounting body 11 of the mounting device 10.



FIG. 6 shows the mounting device 10′ of FIG. 5 being positioned on a standing seam 52′ of another embodiment of a panel assembly 40′. The panel assembly 40′ is defined by nail strip panels 42′ at least generally of the above-described type, but which use a left seam rib 46a′ and right seam rib 46b′ of a different configuration that discussed above, which in turn collectively define a standing seam 52′ of a different configuration. The nose 28 of the mounting device 10′ is again positioned within the recess 50′ on one side of the standing seam 52′ and at least generally in accordance with the foregoing. However, the recess 50′ is of a different configuration, being defined primarily by the end section 48′ of one nail strip panel 42′ and a base section of the other nail strip panel 42′ that defines this seam 52′.


It should be appreciated that the mounting device 10 may be used on the panel assembly 40′, and that the mounting device 10′ may be used on the panel assembly 40. Each of the mounting devices 10, 10′ may be used by any panel assembly defined by nail strip panels of the type described herein (where each nail strip panel includes two seam ribs that are spaced in its width dimension, such that one seam rib of one nail strip panel may be “nested” with a seam rib of an adjacent nail strip panel to define a standing seam).


The foregoing description of the present invention has been presented for purposes of illustration and description. Furthermore, the description is not intended to limit the invention to the form disclosed herein. Consequently, variations and modifications commensurate with the above teachings, and skill and knowledge of the relevant art, are within the scope of the present invention. The embodiments described hereinabove are further intended to explain best modes known of practicing the invention and to enable others skilled in the art to utilize the invention in such, or other embodiments and with various modifications required by the particular application(s) or use(s) of the present invention. It is intended that the appended claims be construed to include alternative embodiments to the extent permitted by the prior art.

Claims
  • 1. A one-piece mounting body selectively engageable to a standing seam of a panel assembly, comprising: an upper portion including an upper surface;a first end;a second end opposite to the first end;a first leg extending from the upper portion and comprising a minimum thickness measured in a lateral dimension;a second leg extending from the upper portion and spaced from the first leg in the lateral dimension, the second leg comprising a maximum thickness measured in the lateral dimension, wherein the minimum thickness is different than the maximum thickness;a slot between the first and second legs, the slot defined by a first slot sidewall of the first leg, a second slot sidewall of the second leg, and a slot base of the upper portion extending between the first and second slot sidewalls, wherein the first slot sidewall extends from the first end to the second end and comprises a slanted portion disposed other than in parallel relation to the second slot sidewall, wherein the first slot sidewall is a fixed distance from the second slot sidewall, and wherein the slot is configured to receive at least part of the standing seam;a recess in the first slot sidewall, the recess spaced from the first and second ends; anda bore extending through the second leg and the second slot sidewall to the slot,wherein the upper portion has no openings that extend between the first end and the second end, andwherein a first portion of the first slot sidewall and a second portion of the second slot sidewall from the slot base to a central axis of the bore are asymmetrical relative to a reference plane orthogonal to the first end and the second end.
  • 2. The mounting body of claim 1, wherein the mounting body is formed of one-piece of a metal material by an extrusion process.
  • 3. The mounting body of claim 1, wherein the second portion of the second slot sidewall is generally planar and is oriented approximately orthogonal to the upper surface.
  • 4. The mounting body of claim 1, wherein the maximum thickness of the second leg is measured through a planar section of the second slot sidewall, and wherein the minimum thickness of the first leg is less than the maximum thickness of the second leg.
  • 5. The mounting body of claim 4, wherein the mounting body has a first thickness between the upper surface and the slot base measured in a vertical dimension that is orthogonal to the lateral dimension, the first thickness being greater than the maximum thickness of the second leg.
  • 6. The mounting body of claim 1, wherein the central axis of the bore is oriented to intersect the recess.
  • 7. The mounting body of claim 1, wherein the reference plane intersects the slot base, the reference plane oriented orthogonal to the slot base and disposed between and spaced from each of the first and second slot sidewalls, wherein the slanted portion of the first slot sidewall extends both away from the slot base and away from the reference plane, and wherein at least a portion of the second slot sidewall is substantially parallel to the reference plane.
  • 8. The mounting body of claim 1, wherein a spacing between the slanted portion of the first slot sidewall and the second slot sidewall progressively increases proceeding away from the slot base for at least a portion of a height of each of the first and second slot sidewalls.
  • 9. The mounting body of claim 1, further comprising: a first nose that extends from a lower portion of the first slot sidewall at least generally in a direction in which the second slot sidewall is spaced from the first slot sidewall, wherein the second slot sidewall does not include a nose.
  • 10. The mounting body of claim 1, further comprising: a first bottom surface of the first leg, the first bottom surface comprising a first width measured in the lateral dimension; anda second bottom surface of the second leg, the second bottom surface comprising a second width measured in the lateral dimension, wherein the first width is greater than the second width.
  • 11. The mounting body of claim 10, wherein the first bottom surface is spaced from the slot base by a first distance measured in a vertical dimension that is orthogonal to the lateral dimension, wherein the second bottom surface is spaced from the slot base by a second distance measured in the vertical dimension, and wherein the second distance is less than the first distance.
  • 12. The mounting body of claim 1, wherein the central axis of the bore is oriented to intersect the slanted portion of the first slot sidewall, and wherein the central axis of the bore is oriented at an oblique angle to the slanted portion of the first slot sidewall.
  • 13. The mounting body of claim 1, wherein the bore is threaded, and wherein the upper portion comprises a threaded hole that extends through the upper surface toward the slot base.
  • 14. The mounting body of claim 1, wherein an exterior surface of the first end is continuous between the upper surface and the slot base of the upper portion.
  • 15. A mounting device selectively securable to a standing seam of a building surface, comprising: a one-piece mounting body comprising: an upper surface comprising a first flat section;a first leg;a second leg spaced from the first leg in a lateral dimension;a slot defined by a first slot sidewall of the first leg, a second slot sidewall of the second leg, and a slot base that extends between the first and second slot sidewalls, wherein the first slot sidewall comprises a first nose that extends in a direction in which the second slot sidewall is spaced from the first slot sidewall, wherein the first slot sidewall has a sidewall surface which extends between the slot base and the first nose, wherein the sidewall surface includes no protrusions that extend into the slot from the sidewall surface, wherein the sidewall surface is operable to engage at least a portion of the standing seam when the mounting device is selectively secured to the standing seam, wherein at least a portion of a planar section of the first slot sidewall between the slot base and the first nose extends from the slot base in a direction that is away from the second slot sidewall, wherein at least a portion of the second slot sidewall is oriented approximately orthogonal to a reference plane that contains the first flat section of the upper surface, and wherein the first leg has a minimum thickness measured in the lateral dimension and a maximum thickness measured in the lateral dimension, the minimum thickness and the maximum thickness measured between the first nose and the slot base, the minimum thickness being less than the maximum thickness;a bore extending through the second leg to the slot, wherein a first portion of the first slot sidewall and a second portion of a second slot sidewall from the slot base to a central axis of the bore are asymmetrical relative to a reference plane through a first end of the one-piece mounting body and a second end of the one-piece mounting body; anda threaded aperture that extends through the upper surface toward the slot base; anda mounting fastener extendable into the threaded aperture and into the mounting body.
  • 16. The mounting device of claim 15, wherein the second slot sidewall comprises a planar section, and wherein the threaded aperture extends through both the upper surface and the slot base.
  • 17. The mounting device of claim 15, wherein the central axis of the bore intersects the first slot sidewall at an oblique angle.
  • 18. The mounting device of claim 17, wherein the second end is opposite to the first end, wherein the first slot sidewall extends from the first end to the second end, and wherein the one-piece mounting body further comprises: a recess in the first slot sidewall, the recess spaced from the first end and the second end, wherein the central axis of the bore is oriented to intersect the recess.
  • 19. The mounting device of claim 15: wherein the second leg has a second maximum thickness measured in the lateral dimension through a planar section of the second slot sidewall, the minimum thickness of the first leg being less than the second maximum thickness of the second leg; andwherein the mounting device has a first thickness between the upper surface and the slot base measured in a vertical dimension that is orthogonal to the lateral dimension, the first thickness being greater than the second maximum thickness of the second leg.
  • 20. A single-piece mounting body selectively engageable to a standing seam of a panel assembly, comprising: a solid upper portion including an upper surface;a first leg extending from the solid upper portion;a second leg extending from the solid upper portion and spaced from the first leg in a lateral dimension;a slot between the first and second legs, the slot being configured to receive at least part of the standing seam and defined by a first slot sidewall of the first leg, a second slot sidewall of the second leg, and a slot base of the solid upper portion extending between the first and second slot sidewalls, wherein the first slot sidewall comprises a slanted portion disposed other than in parallel relation to the second slot sidewall, wherein the second slot sidewall is a fixed distance from the first slot sidewall and the second slot sidewall comprises a planar section, wherein the first leg comprises a minimum thickness measured in the lateral dimension, and wherein the second leg comprises a maximum thickness measured in the lateral dimension through the planar section of the second slot sidewall, the maximum thickness being greater than the minimum thickness;a bore extending through the second leg and the second slot sidewall to the slot, wherein a first portion of the first slot sidewall and a second portion of a second slot sidewall positioned from the slot base to a central axis of the bore are asymmetrical relative to a plane through a first end of the mounting body and a second end of the mounting body; anda second bore that extends through the upper surface into the solid upper portion and toward the slot base,wherein the upper portion is solid between the upper surface and the slot base.
CROSS-REFERENCE TO RELATED APPLICATIONS

This patent application is a continuation of U.S. patent application Ser. No. 16/824,651, filed on Mar. 19, 2020, now U.S. Pat. No. 11,333,179, issued on May 17, 2022, which is a continuation of U.S. patent application Ser. No. 15/628,927, filed on Jun. 21, 2017, now U.S. Pat. No. 10,634,175, issued on Apr. 28, 2020, which is a continuation of U.S. patent application Ser. No. 13/720,461, filed on Dec. 19, 2012, which claims the benefit of U.S. Provisional Patent Application No. 61/581,305, filed on Dec. 29, 2011, each of which applications are incorporated herein by reference in their entirety.

US Referenced Citations (896)
Number Name Date Kind
42992 Howe May 1864 A
97316 Rogers Nov 1869 A
106580 Hathorn Aug 1870 A
189431 Creighton Apr 1877 A
224608 Rendle Feb 1880 A
250580 Rogers Dec 1881 A
332413 List Dec 1885 A
386316 Hawthorne Jul 1888 A
405605 Sagendorph Jun 1889 A
407772 Curtis et al. Jul 1889 A
446217 Dickelman Feb 1891 A
459876 Powers Sep 1891 A
472014 Densmore Mar 1892 A
473512 Laird Apr 1892 A
491173 Hayward Feb 1893 A
507776 Berger et al. Oct 1893 A
529774 Baird Nov 1894 A
602983 Folsom Apr 1898 A
733697 Chronik Jul 1903 A
756884 Parry Apr 1904 A
831445 Kosmatka Sep 1906 A
881757 Winsor Mar 1908 A
884850 Peter Apr 1908 A
927522 Gery Jul 1909 A
933784 Peter Sep 1909 A
939516 Laird Nov 1909 A
1054091 Darnall Feb 1913 A
1085474 Peterson Jan 1914 A
1136460 Wright Apr 1915 A
1230363 Baird Jun 1917 A
1279669 Deming Sep 1918 A
1330309 Dixon Feb 1920 A
1399461 Childs Dec 1921 A
1463065 Sieger Jul 1923 A
1465042 Hruska Aug 1923 A
1477088 Turner Dec 1923 A
1511529 Standlee Oct 1924 A
1620428 Becker Mar 1927 A
1735927 Shaffer Nov 1929 A
1735937 Shaffer Nov 1929 A
1794976 Mueller Mar 1931 A
1893481 Adams Jan 1933 A
1946862 Koch, Jr. Feb 1934 A
1957933 Brandl May 1934 A
2079768 Levow May 1937 A
2150497 Fernberg Mar 1939 A
2183008 Camp Dec 1939 A
2183844 Murphy Dec 1939 A
2192720 Tapman Mar 1940 A
2201320 Place May 1940 A
2250401 Sylvester Jul 1941 A
2274010 Stellin Feb 1942 A
2340692 Ridd Feb 1944 A
2429833 Luce Oct 1947 A
2443362 Tinnerman Jun 1948 A
2448752 Wagner Sep 1948 A
2457250 Macomber Dec 1948 A
2472586 Harvey Jun 1949 A
2504776 Woodfield et al. Apr 1950 A
2525217 Glitsch Oct 1950 A
2574007 Anderson Nov 1951 A
2658247 Heuer Nov 1953 A
2714037 Singer et al. Jul 1955 A
2730381 Curtiss Jan 1956 A
2740027 Budd et al. Mar 1956 A
2808491 Rhee et al. Oct 1957 A
2810173 Bearden Oct 1957 A
2875805 Flora Mar 1959 A
2985174 Guth May 1961 A
3039161 Gagnon Jun 1962 A
3064772 Clay Nov 1962 A
3095672 Di Tullio Jul 1963 A
3112016 Peterson Nov 1963 A
3136206 Adams Jun 1964 A
3194524 Trumbull Jul 1965 A
3221467 Henkels Dec 1965 A
3231076 Frieman Jan 1966 A
3232393 Attwood Feb 1966 A
3232573 Berman Feb 1966 A
3242620 Kaiser Mar 1966 A
3247316 Weimer, Jr. Apr 1966 A
3269075 Marini et al. Aug 1966 A
3288409 Bethea, Jr. Nov 1966 A
3289217 Glover Dec 1966 A
3296750 Zaleski Jan 1967 A
3298653 Omholt Jan 1967 A
3301513 Masao Jan 1967 A
3307235 Hennings Mar 1967 A
3318057 Norsworthy May 1967 A
3333799 Peterson Aug 1967 A
3335995 Pickles Aug 1967 A
3341909 Havener Sep 1967 A
3363864 Olgreen Jan 1968 A
3394524 Howarth Jul 1968 A
3425127 Long Feb 1969 A
3482369 Burke Dec 1969 A
3495363 Johnson Feb 1970 A
3496691 Seaburg et al. Feb 1970 A
3503244 Joslin Mar 1970 A
3523709 Heggy et al. Aug 1970 A
3527619 Miley Sep 1970 A
3565380 Langren Feb 1971 A
3572623 Lapp Mar 1971 A
3590543 Heirich Jul 1971 A
3656747 Revell, Jr. et al. Apr 1972 A
3667182 Stemler Jun 1972 A
3667185 Maurer Jun 1972 A
3715705 Kuo Feb 1973 A
3719919 Tibolla Mar 1973 A
3753326 Kaufman, Sr. Aug 1973 A
3778537 Miller Dec 1973 A
3792560 Naylor Feb 1974 A
3809799 Taylor May 1974 A
3810069 Jaconette, Jr. May 1974 A
3817270 Ehrens et al. Jun 1974 A
3824664 Seeff Jul 1974 A
3845601 Kostecky Nov 1974 A
3861098 Schaub Jan 1975 A
3904161 Scott Sep 1975 A
3914001 Nelson et al. Oct 1975 A
3921253 Nelson Nov 1975 A
3960352 Plattner et al. Jun 1976 A
3986746 Chartier Oct 1976 A
3998018 Hodges Dec 1976 A
4001474 Hereth Jan 1977 A
4007574 Riddell Feb 1977 A
4018538 Smyrni et al. Apr 1977 A
4034532 Reinwall, Jr. Jul 1977 A
4051289 Adamson Sep 1977 A
4127975 Judkins Dec 1978 A
4130970 Cable Dec 1978 A
4141182 McMullen Feb 1979 A
4147257 Zippel Apr 1979 A
4162595 Ramos et al. Jul 1979 A
4162755 Bott Jul 1979 A
4189882 Harrison et al. Feb 1980 A
4189891 Johnson et al. Feb 1980 A
4200107 Reid Apr 1980 A
4203646 Desso et al. May 1980 A
4203648 Seidler May 1980 A
4213282 Heckelsberg Jul 1980 A
4215677 Erickson Aug 1980 A
4223053 Brogan Sep 1980 A
4252458 Keen Feb 1981 A
4261338 McAlister Apr 1981 A
4261384 Dahlbring Apr 1981 A
4263474 Tennant Apr 1981 A
4270721 Mainor, Jr. Jun 1981 A
4291934 Kund Sep 1981 A
4307976 Butler Dec 1981 A
4321416 Tennant Mar 1982 A
4351140 Simpson Sep 1982 A
4358916 Lacasse Nov 1982 A
4366656 Simpson Jan 1983 A
4393859 Marossy et al. Jul 1983 A
4449335 Fahey May 1984 A
4456321 Jones et al. Jun 1984 A
4461514 Schwarz Jul 1984 A
4467582 Hague Aug 1984 A
4475776 Teramachi Oct 1984 A
4546586 Knudson Oct 1985 A
4560224 Weisenburger Dec 1985 A
4567706 Wendt Feb 1986 A
4570405 Knudson Feb 1986 A
4588240 Ruehl et al. May 1986 A
4593877 van der Wyk Jun 1986 A
4601600 Karlsson Jul 1986 A
4649684 Petree et al. Mar 1987 A
4656794 Thevenin et al. Apr 1987 A
4666116 Lloyd May 1987 A
4669808 Owen Jun 1987 A
4674252 Nicholas et al. Jun 1987 A
4682454 Simpson Jul 1987 A
4686809 Skelton Aug 1987 A
4701586 Hagberg Oct 1987 A
4704058 Crunwell Nov 1987 A
4753425 Yang Jun 1988 A
4773791 Hartkorn Sep 1988 A
4782642 Conville Nov 1988 A
4799444 Lisowski Jan 1989 A
4805364 Smolik Feb 1989 A
4809476 Satchell Mar 1989 A
4810573 Harriett Mar 1989 A
4835927 Michlovic Jun 1989 A
4840529 Phillips Jun 1989 A
4848858 Suzuki Jul 1989 A
4854096 Smolik Aug 1989 A
4864081 Bates Sep 1989 A
4878331 Taylor Nov 1989 A
4895338 Froutzis Jan 1990 A
4901963 Yoder Feb 1990 A
4905444 Semaan Mar 1990 A
4909011 Freeman et al. Mar 1990 A
4949929 Kesselman et al. Aug 1990 A
4961712 Schwenk et al. Oct 1990 A
4970833 Porter Nov 1990 A
4987699 Gold Jan 1991 A
4991368 Amstutz Feb 1991 A
4993959 Randolph Feb 1991 A
5007612 Manfre Apr 1991 A
5019111 Dempsey et al. May 1991 A
5036949 Crocker et al. Aug 1991 A
5039352 Mueller Aug 1991 A
5092939 Nath et al. Mar 1992 A
5094435 Depperman Mar 1992 A
5118571 Petersen Jun 1992 A
5119612 Taylor et al. Jun 1992 A
5125608 McMaster et al. Jun 1992 A
5127205 Eidson Jul 1992 A
5138820 Pearce Aug 1992 A
5140793 Knudson Aug 1992 A
5152107 Strickert Oct 1992 A
5154385 Lindberg et al. Oct 1992 A
5164020 Wagner et al. Nov 1992 A
5176462 Chen Jan 1993 A
5187911 Cotter Feb 1993 A
5209619 Rinderer May 1993 A
5213300 Rees May 1993 A
5222340 Bellem Jun 1993 A
5224427 Riches et al. Jul 1993 A
5228248 Haddock Jul 1993 A
5251993 Sigourney Oct 1993 A
5268038 Riermeier et al. Dec 1993 A
5271194 Drew Dec 1993 A
5277006 Ruster Jan 1994 A
5282340 Cline et al. Feb 1994 A
5287670 Funaki Feb 1994 A
5290366 Riermeier et al. Mar 1994 A
5307601 McCracken May 1994 A
5312079 Little, Jr. May 1994 A
5313752 Hatzinikolas May 1994 A
D347701 McCracken Jun 1994 S
5352154 Rotter et al. Oct 1994 A
5356519 Grabscheid et al. Oct 1994 A
5356705 Kelch et al. Oct 1994 A
D351989 Cline et al. Nov 1994 S
5363615 Christopher et al. Nov 1994 A
5363624 Cotter Nov 1994 A
5379567 Vahey Jan 1995 A
5390453 Untiedt Feb 1995 A
5391084 Kreitzman Feb 1995 A
5392574 Sayers Feb 1995 A
5408797 Bellem Apr 1995 A
5409549 Mori Apr 1995 A
5413063 King May 1995 A
5413397 Gold May 1995 A
5417028 Meyer May 1995 A
5425209 Funaki Jun 1995 A
5426906 McCracken Jun 1995 A
5439307 Steinhilber Aug 1995 A
5453027 Buell et al. Sep 1995 A
D364338 Cline Nov 1995 S
5479752 Menegoli Jan 1996 A
5482234 Lyon Jan 1996 A
5483772 Haddock Jan 1996 A
5483782 Hall Jan 1996 A
5491931 Haddock Feb 1996 A
5497591 Nelson Mar 1996 A
5522185 Cline Jun 1996 A
5533839 Shimada Jul 1996 A
D372421 Cline Aug 1996 S
5557903 Haddock Sep 1996 A
5571338 Kadonome et al. Nov 1996 A
5596858 Jordan Jan 1997 A
5596859 Horton et al. Jan 1997 A
5598785 Zaguroli, Jr. Feb 1997 A
5600971 Suk Feb 1997 A
D378343 Macor Mar 1997 S
5609326 Stearns et al. Mar 1997 A
5613328 Alley Mar 1997 A
5640812 Crowley et al. Jun 1997 A
5647178 Cline Jul 1997 A
5651837 Ohtsuka et al. Jul 1997 A
5660008 Bevilacqua Aug 1997 A
5664750 Cohen Sep 1997 A
5667181 van Leeuwen et al. Sep 1997 A
D384574 Cox Oct 1997 S
5681191 Robicheau et al. Oct 1997 A
5688131 Byfield, Jr. Nov 1997 A
D387443 Blankenbiller Dec 1997 S
5694721 Haddock Dec 1997 A
5697197 Simpson Dec 1997 A
5715640 Haddock Feb 1998 A
5732513 Alley Mar 1998 A
5743063 Boozer Apr 1998 A
5743497 Michael Apr 1998 A
5746029 Ullman May 1998 A
5755824 Blechschmidt et al. May 1998 A
5765310 Gold Jun 1998 A
5765329 Huang Jun 1998 A
5787653 Sakai et al. Aug 1998 A
5794386 Klein Aug 1998 A
5809703 Kelly Sep 1998 A
5826379 Curry Oct 1998 A
5826390 Sacks Oct 1998 A
5828008 Lockwood et al. Oct 1998 A
5829723 Brunner et al. Nov 1998 A
5842318 Bass et al. Dec 1998 A
5853296 Gunther et al. Dec 1998 A
5885118 Billenstein et al. Mar 1999 A
5890340 Kafarowski Apr 1999 A
5897088 Kirschner Apr 1999 A
5901507 Smeja et al. May 1999 A
5942046 Kahlfuss et al. Aug 1999 A
5970586 Demel et al. Oct 1999 A
5983588 Haddock Nov 1999 A
5987714 Smith Nov 1999 A
5994640 Bansemir et al. Nov 1999 A
5997368 Mello et al. Dec 1999 A
6029415 Culpepper et al. Feb 2000 A
6073410 Schimpf et al. Jun 2000 A
6073920 Colley Jun 2000 A
6079678 Schott et al. Jun 2000 A
6083010 Daoud Jul 2000 A
6088979 Neal Jul 2000 A
6095462 Morgan Aug 2000 A
6099203 Landes Aug 2000 A
6105317 Tomiuchi et al. Aug 2000 A
6106310 Davis et al. Aug 2000 A
6111189 Garvison et al. Aug 2000 A
6119317 Pfister Sep 2000 A
6132070 Vosika et al. Oct 2000 A
6158180 Edwards Dec 2000 A
6164033 Haddock Dec 2000 A
6182403 Mimura et al. Feb 2001 B1
6186799 Mello Feb 2001 B1
6206991 Starr Mar 2001 B1
6223477 Alley May 2001 B1
6237297 Paroly May 2001 B1
6253496 Gilchrist Jul 2001 B1
6256934 Alley Jul 2001 B1
6269596 Ohtsuka et al. Aug 2001 B1
6276285 Ruch Aug 2001 B1
6312283 Hio Nov 2001 B1
6320114 Kuechler Nov 2001 B1
6336616 Lin Jan 2002 B1
6354045 Boone et al. Mar 2002 B1
6360491 Ullman Mar 2002 B1
6364262 Gibson et al. Apr 2002 B1
6364374 Noone et al. Apr 2002 B1
6370828 Genschorek Apr 2002 B1
6382569 Schattner et al. May 2002 B1
6385914 Alley May 2002 B2
6393796 Goettl et al. May 2002 B1
6443680 Bodin Sep 2002 B1
6453623 Nelson et al. Sep 2002 B1
6470629 Haddock Oct 2002 B1
6497080 Malcolm Dec 2002 B1
6499259 Hockman Dec 2002 B1
6508442 Dolez Jan 2003 B1
6521821 Makita et al. Feb 2003 B2
6534702 Makita et al. Mar 2003 B1
6536166 Alley Mar 2003 B1
6536729 Haddock Mar 2003 B1
6576830 Nagao et al. Jun 2003 B2
6602016 Eckart et al. Aug 2003 B2
6622441 Miller Sep 2003 B2
6637671 Alley Oct 2003 B2
6647671 Alley Nov 2003 B1
6655633 Chapman, Jr. Dec 2003 B1
6665991 Hasan Dec 2003 B2
6688047 McNichol Feb 2004 B1
D487595 Sherman Mar 2004 S
6715256 Fischer Apr 2004 B1
6718718 Haddock Apr 2004 B2
6725623 Riddell et al. Apr 2004 B1
6730841 Heckeroth May 2004 B2
6732982 Messinger May 2004 B1
6751919 Calixto Jun 2004 B2
D495595 Dressler Sep 2004 S
D496738 Sherman Sep 2004 S
6799742 Nakamura et al. Oct 2004 B2
6834466 Trevorrow et al. Dec 2004 B2
6918217 Jakob-Bamberg et al. Jul 2005 B2
6918727 Huang Jul 2005 B2
6922948 Smeja et al. Aug 2005 B2
6967278 Hatsukaiwa et al. Nov 2005 B2
7012188 Erling Mar 2006 B2
7013612 Haddock Mar 2006 B2
7063763 Chapman, Jr. Jun 2006 B2
7100338 Haddock Sep 2006 B2
7104020 Suttle Sep 2006 B1
7127852 Dressler Oct 2006 B1
7191794 Hodges Mar 2007 B2
7195513 Gherardini Mar 2007 B1
7219863 Collett, II May 2007 B1
7240770 Mullins et al. Jul 2007 B2
7260918 Liebendorfer Aug 2007 B2
7281695 Jordan Oct 2007 B2
7386922 Taylor et al. Jun 2008 B1
7406924 Impey Aug 2008 B1
7410139 Rorich Aug 2008 B1
7431252 Birli et al. Oct 2008 B2
7435134 Lenox Oct 2008 B2
7451573 Orszulak et al. Nov 2008 B2
7458555 Mastropaolo et al. Dec 2008 B2
7459196 Sturm Dec 2008 B2
7469511 Wobber Dec 2008 B2
7493730 Fennell, Jr. Feb 2009 B2
7513080 Showalter Apr 2009 B1
7516580 Fennell, Jr. Apr 2009 B2
7568871 Chopp, Jr. et al. Aug 2009 B2
7574839 Simpson Aug 2009 B1
7578711 Robinson Aug 2009 B2
7600349 Liebendorfer Oct 2009 B2
7658356 Nehls Feb 2010 B1
7686625 Dyer et al. Mar 2010 B1
7703256 Haddock Apr 2010 B2
7707800 Kannisto May 2010 B2
7712278 Lonardi May 2010 B2
7721492 Plaisted et al. May 2010 B2
7731138 Wiesner et al. Jun 2010 B2
7733667 Qin et al. Jun 2010 B2
7758003 Pourtier et al. Jul 2010 B2
7758011 Haddock Jul 2010 B2
7762027 Wentworth et al. Jul 2010 B1
7766292 Liebendorfer Aug 2010 B2
7780472 Lenox Aug 2010 B2
7788874 Miller Sep 2010 B2
7788879 Brandes et al. Sep 2010 B2
7824191 Browder Nov 2010 B1
7827920 Beck et al. Nov 2010 B2
7845127 Brescia Dec 2010 B2
7847181 Brescia Dec 2010 B2
7861480 Wendelburg et al. Jan 2011 B2
7861485 Wentworth et al. Jan 2011 B1
7874117 Simpson Jan 2011 B1
7891618 Carnevali Feb 2011 B2
7895808 Wentworth et al. Mar 2011 B1
7905064 Wentworth et al. Mar 2011 B1
7915519 Kobayashi Mar 2011 B2
7926777 Koesema, Jr. Apr 2011 B2
7954287 Bravo et al. Jun 2011 B2
7976257 Kufner et al. Jul 2011 B2
7988464 Kossak et al. Aug 2011 B2
8011153 Orchard Sep 2011 B2
8066200 Hepner et al. Nov 2011 B2
8070119 Taylor Dec 2011 B2
8092129 Wiley et al. Jan 2012 B2
8096503 Verweyen Jan 2012 B2
8099837 Santlin et al. Jan 2012 B2
D653940 Yasher Feb 2012 S
8109048 West Feb 2012 B2
8146299 Stearns et al. Apr 2012 B2
8151522 Stearns et al. Apr 2012 B2
8153700 Stearns et al. Apr 2012 B2
D658977 Riddell et al. May 2012 S
8181926 Magno, Jr. et al. May 2012 B2
8226061 Nehls Jul 2012 B2
8251326 McPheeters Aug 2012 B2
8272172 Li Sep 2012 B2
8294026 Wang et al. Oct 2012 B2
8312678 Haddock Nov 2012 B1
8316590 Cusson Nov 2012 B2
8316621 Safari Kermanshahi et al. Nov 2012 B2
D674513 Liu Jan 2013 S
8344239 Plaisted Jan 2013 B2
8347572 Piedmont Jan 2013 B2
8375654 West et al. Feb 2013 B1
8387319 Gilles-Gagnon et al. Mar 2013 B1
8404963 Kobayashi Mar 2013 B2
8407895 Hartelius et al. Apr 2013 B2
8413946 Hartelius et al. Apr 2013 B2
8424821 Liu Apr 2013 B2
8430372 Haddock Apr 2013 B2
8448405 Schaefer et al. May 2013 B2
8453986 Schnitzer Jun 2013 B2
8458967 Kalkanoglu et al. Jun 2013 B2
8495997 Laubach Jul 2013 B1
8505254 Welter et al. Aug 2013 B2
8528888 Header Sep 2013 B2
8584424 Smith Nov 2013 B2
8590223 Kilgore et al. Nov 2013 B2
8627617 Haddock et al. Jan 2014 B2
8627632 Werner et al. Jan 2014 B2
D699176 Salomon et al. Feb 2014 S
8640402 Bilge Feb 2014 B1
8656649 Haddock Feb 2014 B2
8683751 Stearns Apr 2014 B2
8695290 Kim et al. Apr 2014 B1
8701354 Stearns et al. Apr 2014 B2
8701372 Nuernberger et al. Apr 2014 B2
8713881 DuPont et al. May 2014 B2
8733027 Marston et al. May 2014 B1
8745935 DuPont et al. Jun 2014 B2
8752338 Schaefer et al. Jun 2014 B2
8756870 Teller et al. Jun 2014 B2
8770885 Myers Jul 2014 B2
8776456 Schrock Jul 2014 B1
8782983 Stearns Jul 2014 B2
8791611 Arnould et al. Jul 2014 B2
8806813 Plaisted et al. Aug 2014 B2
8806815 Liu et al. Aug 2014 B1
8813441 Rizzo Aug 2014 B2
8826163 Chanin et al. Sep 2014 B1
8826618 Stearns Sep 2014 B2
8829330 Meyer et al. Sep 2014 B2
8833714 Haddock et al. Sep 2014 B2
8839573 Cusson et al. Sep 2014 B2
8839575 Liu et al. Sep 2014 B1
8844234 Haddock et al. Sep 2014 B2
8850754 Rizzo Oct 2014 B2
8854829 Bopp et al. Oct 2014 B1
8875463 Plagemann et al. Nov 2014 B2
8888431 Haney Nov 2014 B2
8893441 Hess, III et al. Nov 2014 B1
8894424 DuPont Nov 2014 B2
D718703 Rizzo Dec 2014 S
D718704 Rizzo Dec 2014 S
8904718 Schick et al. Dec 2014 B2
8910928 Header Dec 2014 B2
8920586 Poulakis Dec 2014 B2
8925263 Haddock et al. Jan 2015 B2
8935893 Liu et al. Jan 2015 B2
8938932 Wentworth et al. Jan 2015 B1
8950157 Schrock Feb 2015 B1
8955259 Hemingway Feb 2015 B2
8966833 Ally Mar 2015 B2
8991065 Schrock Mar 2015 B1
9003728 Asci Apr 2015 B2
9003733 Simpson et al. Apr 2015 B1
9010042 Anderson et al. Apr 2015 B2
9011034 Liu Apr 2015 B2
9052123 Anderson et al. Jun 2015 B2
9065191 Martin et al. Jun 2015 B2
9068339 Schaefer et al. Jun 2015 B2
9076899 Schrock Jul 2015 B2
9085900 Haddock Jul 2015 B2
9086185 Haddock Jul 2015 B2
9097443 Liu et al. Aug 2015 B2
9127451 Boor Sep 2015 B1
9134044 Stearns et al. Sep 2015 B2
9147785 Haddock et al. Sep 2015 B2
D740113 Olenick Oct 2015 S
9166524 West et al. Oct 2015 B2
9175878 Kemmer et al. Nov 2015 B2
9175881 Schrock et al. Nov 2015 B2
9194130 Stanley Nov 2015 B1
9194613 Nuernberger et al. Nov 2015 B2
9200456 Murphy Dec 2015 B2
9222263 Haddock Dec 2015 B2
9223907 Chanin et al. Dec 2015 B2
9273885 Rodrigues et al. Mar 2016 B2
9291369 West et al. Mar 2016 B2
9306490 Haddock et al. Apr 2016 B2
9309910 Anderson et al. Apr 2016 B2
9331629 Cheung et al. May 2016 B2
9341285 Magno, Jr. et al. May 2016 B2
9447988 Stearns et al. Sep 2016 B2
9473066 Stehan et al. Oct 2016 B2
9479110 Patton et al. Oct 2016 B2
9496697 Wentworth Nov 2016 B1
9518596 West et al. Dec 2016 B2
9530916 Haddock et al. Dec 2016 B2
9534390 Pendley et al. Jan 2017 B2
9599280 West et al. Mar 2017 B2
9608559 Haddock et al. Mar 2017 B2
9611652 Haddock et al. Apr 2017 B2
9647433 Meine May 2017 B2
9647607 Patton et al. May 2017 B2
9689411 Meine et al. Jun 2017 B2
9712106 Wentworth et al. Jul 2017 B2
9714670 Header Jul 2017 B2
9722532 Almy Aug 2017 B2
9732512 Haddock Aug 2017 B2
9742173 Wentworth Aug 2017 B2
9755572 Wentworth et al. Sep 2017 B2
D800055 Rothschild Oct 2017 S
9813012 Wentworth et al. Nov 2017 B2
9813013 McPheeters et al. Nov 2017 B2
9819303 Ash Nov 2017 B2
9831817 Rothschild Nov 2017 B2
9845584 Goldammer Dec 2017 B1
9850661 Kovacs Dec 2017 B2
9853593 Cinnamon et al. Dec 2017 B2
9853594 Almy Dec 2017 B2
9865938 Meine et al. Jan 2018 B2
9876463 Jasmin Jan 2018 B2
9893676 Anderson et al. Feb 2018 B2
9893677 Liu Feb 2018 B1
9920958 Haddock et al. Mar 2018 B2
9926706 Hockman Mar 2018 B2
9966745 Wentworth May 2018 B2
9985361 Martin May 2018 B2
9985575 Stearns et al. May 2018 B2
10036414 Wiley et al. Jul 2018 B2
10036576 Robinson Jul 2018 B1
D827160 Menton Aug 2018 S
10053856 Haddock Aug 2018 B2
10054336 Haddock et al. Aug 2018 B2
D827873 Menton Sep 2018 S
D827874 Menton Sep 2018 S
10077562 Haddock et al. Sep 2018 B2
10103682 Haddock et al. Oct 2018 B2
10103683 Wentworth Oct 2018 B2
10106987 Haddock et al. Oct 2018 B2
10141662 Bernard et al. Nov 2018 B2
10186791 Meine et al. Jan 2019 B2
10202991 Lewis Feb 2019 B2
10205418 Nayar Feb 2019 B2
10211773 Jasmin et al. Feb 2019 B2
10211775 Wentworth et al. Feb 2019 B1
10218305 Schrock Feb 2019 B1
10240820 Ash et al. Mar 2019 B2
10291176 Wentworth et al. May 2019 B2
10312855 Lester et al. Jun 2019 B2
10337764 Ash et al. Jul 2019 B2
10359069 Ash et al. Jul 2019 B2
10385573 Van Leuven Aug 2019 B2
10443896 Haddock et al. Oct 2019 B2
10454190 Martin Oct 2019 B1
10472828 Stearns et al. Nov 2019 B2
10502457 Haddock et al. Dec 2019 B2
10505492 Hudson et al. Dec 2019 B2
10511252 Wentworth et al. Dec 2019 B2
10530293 Legall et al. Jan 2020 B2
10551090 De Vogel et al. Feb 2020 B2
10594251 Stearns et al. Mar 2020 B2
10622935 Liu Apr 2020 B1
10634175 Haddock Apr 2020 B2
10640980 Haddock May 2020 B2
10644643 Stearns et al. May 2020 B2
10673151 Ash et al. Jun 2020 B2
10686401 Ash et al. Jun 2020 B2
10731355 Haddock et al. Aug 2020 B2
10749459 Liu et al. Aug 2020 B1
10749466 Smeja Aug 2020 B2
10763777 Stearns et al. Sep 2020 B2
10797634 Jasmin et al. Oct 2020 B1
10816240 Robinson Oct 2020 B2
10837476 Lewis Nov 2020 B2
10851826 Ash et al. Dec 2020 B2
10859292 Haddock et al. Dec 2020 B2
10868491 Wentworth et al. Dec 2020 B2
10903785 Haddock et al. Jan 2021 B2
D909853 Jasmin Feb 2021 S
10931225 Yang et al. Feb 2021 B2
10948002 Haddock Mar 2021 B2
11009262 Ash et al. May 2021 B2
11012023 Stearns et al. May 2021 B2
D923203 Muther Jun 2021 S
D923823 Muther Jun 2021 S
11035126 Haddock et al. Jun 2021 B2
11041310 Haddock et al. Jun 2021 B1
11085188 Haddock Aug 2021 B2
11118353 Stearns et al. Sep 2021 B2
11121484 Ash et al. Sep 2021 B2
11121669 Stearns et al. Sep 2021 B2
11139773 Eriksson Oct 2021 B2
11139774 Wentworth et al. Oct 2021 B2
11189941 Ash et al. Nov 2021 B2
11196187 Ash et al. Dec 2021 B2
11201581 Stearns et al. Dec 2021 B2
11296648 Jasmin et al. Apr 2022 B1
11333179 Haddock May 2022 B2
11352793 Haddock et al. Jun 2022 B2
11368005 Meine et al. Jun 2022 B2
11549724 Zhu Jan 2023 B2
11552591 Jasmin et al. Jan 2023 B2
11575343 Wentworth et al. Feb 2023 B2
D983015 Jasmin et al. Apr 2023 S
D983016 Jasmin et al. Apr 2023 S
D983017 Jasmin et al. Apr 2023 S
D983018 Jasmin et al. Apr 2023 S
D983019 Jasmin et al. Apr 2023 S
11621665 Jasmin et al. Apr 2023 B2
D984872 Jasmin et al. May 2023 S
11646692 Wentworth et al. May 2023 B2
11750143 Jasmin et al. Sep 2023 B1
11757400 Jasmin et al. Sep 2023 B1
11770097 Jasmin et al. Sep 2023 B1
11848638 Jasmin Dec 2023 B1
11876482 Jasmin et al. Jan 2024 B1
11881808 Jasmin et al. Jan 2024 B1
20020026765 Vahey Mar 2002 A1
20020088196 Haddock Jul 2002 A1
20020160635 Kurrer et al. Oct 2002 A1
20030015637 Liebendorfer Jan 2003 A1
20030062078 Mimura Apr 2003 A1
20030070368 Shingleton Apr 2003 A1
20030131551 Mollinger et al. Jul 2003 A1
20030146346 Chapman, Jr. Aug 2003 A1
20030173460 Chapman, Jr. Sep 2003 A1
20030201009 Nakajima et al. Oct 2003 A1
20040035065 Orszulak et al. Feb 2004 A1
20040055233 Showalter Mar 2004 A1
20040164208 Nielson et al. Aug 2004 A1
20040231949 Le et al. Nov 2004 A1
20040237465 Refond Dec 2004 A1
20050095062 Iverson et al. May 2005 A1
20050102958 Anderson May 2005 A1
20050115176 Russell Jun 2005 A1
20050117997 Pinzl Jun 2005 A1
20050210769 Harvey Sep 2005 A1
20050257434 Hockman Nov 2005 A1
20060065805 Barton et al. Mar 2006 A1
20060075691 Verkamlp Apr 2006 A1
20060096061 Weiland et al. May 2006 A1
20060118163 Plaisted et al. Jun 2006 A1
20060174571 Panasik et al. Aug 2006 A1
20060174931 Mapes et al. Aug 2006 A1
20060254192 Fennell, Jr. Nov 2006 A1
20070075198 Foser Apr 2007 A1
20070131273 Kobayashi Jun 2007 A1
20070199590 Tanaka et al. Aug 2007 A1
20070241238 Neace Oct 2007 A1
20070246039 Brazier et al. Oct 2007 A1
20070248434 Wiley et al. Oct 2007 A1
20070289229 Aldo Dec 2007 A1
20070289233 Haddock Dec 2007 A1
20080035140 Placer et al. Feb 2008 A1
20080041011 Kannisto Feb 2008 A1
20080095591 Wu Apr 2008 A1
20080184639 Cotter Aug 2008 A1
20080190047 Allen Aug 2008 A1
20080236520 Maehara et al. Oct 2008 A1
20080265232 Terrels et al. Oct 2008 A1
20080302407 Kobayashi Dec 2008 A1
20080302928 Haddock Dec 2008 A1
20090000220 Lenox Jan 2009 A1
20090007520 Navon Jan 2009 A1
20090194098 Placer Aug 2009 A1
20090223741 Picard, Jr. Sep 2009 A1
20090229213 Mistelski Sep 2009 A1
20090230205 Hepner et al. Sep 2009 A1
20090320826 Kufner Dec 2009 A1
20100012805 Taylor Jan 2010 A1
20100058701 Yao et al. Mar 2010 A1
20100133040 London Jun 2010 A1
20100154784 King et al. Jun 2010 A1
20100162641 Reyal et al. Jul 2010 A1
20100171016 Haddock Jul 2010 A1
20100175738 Huss et al. Jul 2010 A1
20100192505 Schaefer et al. Aug 2010 A1
20100193651 Railsback et al. Aug 2010 A1
20100206303 Thorne Aug 2010 A1
20100212720 Meyer et al. Aug 2010 A1
20100276558 Faust et al. Nov 2010 A1
20100288337 Rizzo Nov 2010 A1
20100293874 Liebendorfer Nov 2010 A1
20100314517 Patzer Dec 2010 A1
20110039458 Byrne Feb 2011 A1
20110078892 Hartelius et al. Apr 2011 A1
20110088340 Stobbe Apr 2011 A1
20110120047 Stearns et al. May 2011 A1
20110138585 Kmita et al. Jun 2011 A1
20110154750 Welter et al. Jun 2011 A1
20110174360 Plaisted et al. Jul 2011 A1
20110179606 Magno, Jr. et al. Jul 2011 A1
20110209745 Korman Sep 2011 A1
20110214365 Aftanas Sep 2011 A1
20110214388 London Sep 2011 A1
20110232212 Pierson et al. Sep 2011 A1
20110239546 Tsuzuki et al. Oct 2011 A1
20110247292 Li Oct 2011 A1
20110260027 Farnham, Jr. Oct 2011 A1
20110271611 Maracci et al. Nov 2011 A1
20110272545 Liu Nov 2011 A1
20110314752 Meier Dec 2011 A1
20120073630 Wu Mar 2012 A1
20120079781 Koller Apr 2012 A1
20120085041 Place Apr 2012 A1
20120099943 Chiu Apr 2012 A1
20120102853 Rizzo May 2012 A1
20120153108 Schneider Jun 2012 A1
20120167364 Koch et al. Jul 2012 A1
20120175322 Park et al. Jul 2012 A1
20120192519 Ray Aug 2012 A1
20120193310 Fluhrer et al. Aug 2012 A1
20120201601 Rizzo Aug 2012 A1
20120244729 Rivera et al. Sep 2012 A1
20120248271 Zeilenga Oct 2012 A1
20120298188 West et al. Nov 2012 A1
20120299233 Header Nov 2012 A1
20120325761 Kubsch et al. Dec 2012 A1
20130011187 Schuit et al. Jan 2013 A1
20130048056 Kilgore et al. Feb 2013 A1
20130089388 Liu et al. Apr 2013 A1
20130091692 Stanley Apr 2013 A1
20130118545 Bosler et al. May 2013 A1
20130149030 Merhar Jun 2013 A1
20130167470 Montgomery et al. Jul 2013 A1
20130168525 Haddock Jul 2013 A1
20130220403 Rizzo Aug 2013 A1
20130227833 Rizzo Sep 2013 A1
20130263917 Hamamura Oct 2013 A1
20130313043 Lallier Nov 2013 A1
20130334151 Kanczuzewski et al. Dec 2013 A1
20130340358 Danning Dec 2013 A1
20140000681 Zhao et al. Jan 2014 A1
20140003861 Cheung Jan 2014 A1
20140041202 Schnitzer et al. Feb 2014 A1
20140042286 Jaffari Feb 2014 A1
20140069048 Ally Mar 2014 A1
20140096462 Haddock Apr 2014 A1
20140179133 Redel Jun 2014 A1
20140220834 Rizzo Aug 2014 A1
20140231605 Sharpe Aug 2014 A1
20140260068 Pendley et al. Sep 2014 A1
20140283467 Chabas et al. Sep 2014 A1
20140290718 Jackson, Jr. Oct 2014 A1
20140311087 Haddock Oct 2014 A1
20140338273 Stapleton Nov 2014 A1
20140341645 Liu et al. Nov 2014 A1
20150052834 Gies et al. Feb 2015 A1
20150060620 Smeja Mar 2015 A1
20150107168 Kobayashi Apr 2015 A1
20150129517 Wildes May 2015 A1
20150171787 Genschorek Jun 2015 A1
20150200620 Haddock et al. Jul 2015 A1
20150214884 Rizzo Jul 2015 A1
20150249423 Braunstein et al. Sep 2015 A1
20160025262 Stearns et al. Jan 2016 A1
20160049901 Muther et al. Feb 2016 A1
20160060869 Smeja Mar 2016 A1
20160087576 Johansen et al. Mar 2016 A1
20160111835 Nayar Apr 2016 A1
20160111997 Ganshaw et al. Apr 2016 A1
20160111998 Schmid Apr 2016 A1
20160130815 Menegoli May 2016 A1
20160160524 Malins Jun 2016 A1
20160176105 Stanley Jun 2016 A1
20160177984 Kovacs et al. Jun 2016 A1
20160233820 Redel Aug 2016 A1
20160268958 Wildes et al. Sep 2016 A1
20170040928 Schuit et al. Feb 2017 A1
20170067258 Stearns et al. Mar 2017 A1
20170073974 Kovacs Mar 2017 A1
20170107723 Stearns et al. Apr 2017 A1
20170237386 Stephan et al. Aug 2017 A1
20170301265 Kyle Oct 2017 A1
20170302221 Jasmin Oct 2017 A1
20170336021 Anderson Nov 2017 A1
20180013382 Smeja Jan 2018 A1
20180167026 Xie Jun 2018 A1
20190013772 Bamat et al. Jan 2019 A1
20190049151 Harris et al. Feb 2019 A1
20190106885 Stearns et al. Apr 2019 A1
20190123460 Ash et al. Apr 2019 A1
20190165717 Haddock et al. May 2019 A1
20190178274 Katz Jun 2019 A1
20190195252 Pryor Jun 2019 A1
20190221696 Kubo et al. Jul 2019 A1
20190226214 Van Leuven Jul 2019 A1
20190273460 Kovacs Sep 2019 A1
20190285224 McKechnie et al. Sep 2019 A1
20190330853 Van Leuven Oct 2019 A1
20190343085 Donado Nov 2019 A1
20190345719 Header Nov 2019 A1
20190363667 Braunstein et al. Nov 2019 A1
20190372501 Wada et al. Dec 2019 A1
20200144959 Stearns et al. May 2020 A1
20200208658 Roman Jul 2020 A1
20200252023 Stearns et al. Aug 2020 A1
20200313604 Harris Oct 2020 A1
20200313611 Ash et al. Oct 2020 A1
20200318349 Stearns et al. Oct 2020 A1
20200321763 Joshi Oct 2020 A1
20200340712 Leitch et al. Oct 2020 A1
20200362632 Fort Nov 2020 A1
20210005115 Johnson Jan 2021 A1
20210028741 Stearns et al. Jan 2021 A1
20210067085 Stearns et al. Mar 2021 A1
20210079947 Ash et al. Mar 2021 A1
20210104973 Stearns et al. Apr 2021 A1
20210111546 Varale Apr 2021 A1
20210140681 Haddock et al. May 2021 A1
20210143771 Haddock et al. May 2021 A1
20210159843 Stearns et al. May 2021 A1
20210167720 Stearns et al. Jun 2021 A1
20210184626 Yang et al. Jun 2021 A1
20210194157 Ash et al. Jun 2021 A1
20210199141 Haddock Jul 2021 A1
20210265940 Stearns et al. Aug 2021 A1
20210285223 Haddock et al. Sep 2021 A1
20210301541 Haddock et al. Sep 2021 A1
20210310249 Haddock et al. Oct 2021 A1
20210363755 Haddock Nov 2021 A1
20210376781 Stearns et al. Dec 2021 A1
20210376782 Stearns et al. Dec 2021 A1
20210388618 Stearns et al. Dec 2021 A1
20220010823 Moss et al. Jan 2022 A1
20220140771 Stearns et al. May 2022 A1
20220145634 Stearns et al. May 2022 A1
20220149545 Ash et al. May 2022 A1
20220178586 Ash et al. Jun 2022 A1
20220278516 Meine et al. Sep 2022 A1
20230036926 Jovanovic et al. Feb 2023 A1
20230151834 Kovacs May 2023 A1
20230170840 Stearns et al. Jun 2023 A1
20230198460 Jasmin et al. Jun 2023 A1
20230261606 Stearns et al. Aug 2023 A1
20230336108 Morano Oct 2023 A1
20230396208 Pedlar et al. Dec 2023 A1
20230402958 Jasmin Dec 2023 A1
20240022207 Jasmin et al. Jan 2024 A1
Foreign Referenced Citations (166)
Number Date Country
13076 Aug 1903 AT
26329 Nov 1906 AT
298762 May 1972 AT
2005201707 Nov 2006 AU
2009101276 Jan 2010 AU
2009245849 Jun 2010 AU
2014362215 Jun 2015 AU
2017203660 Oct 2018 AU
2016294152 Dec 2018 AU
2704915 Sep 2011 CA
204783 May 1939 CH
388590 Feb 1965 CH
469159 Feb 1969 CH
671063 Jul 1989 CH
202025767 Nov 2011 CN
202577780 Dec 2012 CN
103774795 May 2014 CN
104254654 Dec 2014 CN
105208941 Dec 2015 CN
206628755 Nov 2017 CN
206717199 Dec 2017 CN
206737192 Dec 2017 CN
206849001 Jan 2018 CN
108105222 Jun 2018 CN
6511275 Aug 2012 CO
298762 Apr 1916 DE
941690 Apr 1956 DE
2126082 Dec 1972 DE
2523087 Nov 1976 DE
2556095 Jun 1977 DE
3326223 Apr 1984 DE
3617225 Nov 1987 DE
3723020 Jan 1989 DE
3728831 Jan 1989 DE
9112788 Dec 1991 DE
4115240 Oct 1992 DE
10056177 May 2002 DE
10062697 Jul 2002 DE
10344202 Apr 2004 DE
202005006951 Aug 2005 DE
102005002828 Aug 2006 DE
202006015336 Dec 2006 DE
202007002252 Apr 2007 DE
202007018367 Jul 2008 DE
102007036206 Feb 2009 DE
202009010984 Dec 2009 DE
102008032985 Jan 2010 DE
202013002857 May 2013 DE
202015102936 Sep 2016 DE
202012013476 Feb 2017 DE
0481905 Apr 1992 EP
0722023 Jul 1996 EP
0952272 Oct 1999 EP
1126098 Aug 2001 EP
1447494 Aug 2004 EP
1804008 Jul 2007 EP
2105971 Sep 2009 EP
2327942 Jun 2011 EP
2375185 Oct 2011 EP
2746695 Jun 2014 EP
2528166 Sep 2015 EP
3092350 Apr 2019 EP
3364124 Oct 2019 EP
3552307 Oct 2019 EP
3361183 Dec 2019 EP
469159 Jul 1914 FR
1215468 Apr 1960 FR
2468209 Apr 1981 FR
2515236 Apr 1983 FR
2638772 May 1990 FR
2697060 Apr 1994 FR
2793827 Nov 2000 FR
2950375 Mar 2011 FR
2971577 Aug 2012 FR
2997169 Apr 2014 FR
3074369 Dec 2019 FR
2149829 Jun 1985 GB
2364077 Jan 2002 GB
2430946 Apr 2007 GB
2465484 May 2010 GB
2476104 Jun 2011 GB
S56-158486 Dec 1981 JP
H03-166452 Jul 1991 JP
H04-73367 Mar 1992 JP
H04-366294 Dec 1992 JP
H05-346055 Dec 1993 JP
H08-189150 Jul 1996 JP
H09-177272 Jul 1997 JP
H09-256562 Sep 1997 JP
H11-172861 Jun 1999 JP
2000-120235 Apr 2000 JP
2000-179106 Jun 2000 JP
2000-234423 Aug 2000 JP
2000-303638 Oct 2000 JP
2001-193231 Jun 2001 JP
2001-303724 Oct 2001 JP
2002-146978 May 2002 JP
2002-180609 Jun 2002 JP
2003-096986 Apr 2003 JP
2003-155803 May 2003 JP
2003-213854 Jul 2003 JP
2004-060358 Feb 2004 JP
2004-068270 Mar 2004 JP
2004-092134 Mar 2004 JP
2004-124583 Apr 2004 JP
2004-156326 Jun 2004 JP
2004-264009 Sep 2004 JP
2004-278145 Oct 2004 JP
2005-171623 Jun 2005 JP
2005-322821 Nov 2005 JP
2006-097291 Apr 2006 JP
2009-052278 Mar 2009 JP
2009-179955 Aug 2009 JP
2009-185599 Aug 2009 JP
2011-069130 Apr 2011 JP
2011-185014 Sep 2011 JP
2011-236611 Nov 2011 JP
2012-144903 Aug 2012 JP
6033922 Nov 2016 JP
2018-091009 Jun 2018 JP
100957530 May 2010 KR
2017016056 Aug 2018 MX
2021378 Jan 2020 NL
2021379 Jan 2020 NL
2021380 Jan 2020 NL
2021740 May 2020 NL
3066398 Dec 2019 PT
3066399 Dec 2019 PT
WO 9608617 Mar 1996 WO
WO 9630606 Oct 1996 WO
WO 9708399 Mar 1997 WO
WO 9955982 Nov 1999 WO
WO 0139331 May 2001 WO
WO 03098126 Nov 2003 WO
WO 2008021714 Feb 2008 WO
WO 2008028151 Mar 2008 WO
WO 2010112049 Oct 2010 WO
WO 2010113003 Oct 2010 WO
WO 2010121830 Oct 2010 WO
WO 2010140878 Dec 2010 WO
WO 2011019460 Feb 2011 WO
WO 2011154019 Dec 2011 WO
WO 2012014203 Feb 2012 WO
WO 2012017711 Feb 2012 WO
WO 2012048056 Apr 2012 WO
WO 2012116121 Aug 2012 WO
WO 2012116777 Sep 2012 WO
WO 2013009375 Jan 2013 WO
WO 2014194576 Dec 2014 WO
WO 2015061113 Apr 2015 WO
WO 2016198305 Dec 2016 WO
WO 2018169391 Sep 2018 WO
WO 2019239024 Dec 2019 WO
WO 2020022879 Jan 2020 WO
WO 2020022880 Jan 2020 WO
WO 2020162746 Aug 2020 WO
WO 2020187472 Sep 2020 WO
WO 2021043407 Mar 2021 WO
WO 2021061866 Apr 2021 WO
WO 2021086185 May 2021 WO
WO 2021102062 May 2021 WO
WO 2021119458 Jun 2021 WO
WO 2022240909 Nov 2022 WO
WO 2023028101 Mar 2023 WO
WO 2023177662 Sep 2023 WO
WO 2023192199 Oct 2023 WO
Non-Patent Literature Citations (151)
Entry
U.S. Appl. No. 14/257,747, filed Apr. 21, 2014 now U.S. Pat. No. 9,085,900.
U.S. Appl. No. 07/912,845, filed Jul. 13, 1992 now U.S. Pat. No. 5,228,248.
U.S. Appl. No. 08/091,176, filed Jul. 13, 1993 now U.S. Pat. No. 5,483,772.
U.S. Appl. No. 08/482,274, filed Jun. 7, 1995 now U.S. Pat. No. 5,715,640.
U.S. Appl. No. 08/987,368, filed Dec. 9, 1997 now U.S. Pat. No. 5,983,588.
U.S. Appl. No. 09/312,013, filed May 14, 1999 now U.S. Pat. No. 6,164,033.
U.S. Appl. No. 09/698,358, filed Oct. 27, 2000.
U.S. Appl. No. 10/118,057, filed Apr. 8, 2002 now U.S. Pat. No. 6,718,718.
U.S. Appl. No. 10/824,320, filed Apr. 13, 2004.
U.S. Appl. No. 08/335,987, filed Nov. 8, 1994 now U.S. Pat. No. 5,694,721.
U.S. Appl. No. 08/336,288, filed Nov. 8, 1994 now U.S. Pat. No. 5,491,931.
U.S. Appl. No. 09/313,105, filed May 17, 1999 now U.S. Pat. No. 6,536,729.
U.S. Appl. No. 09/313,103 filed May 17, 1999 now U.S. Pat. No. 6,470,629.
U.S. Appl. No. 09/758,805, filed Jan. 11, 2001.
U.S. Appl. No. 10/746,546, filed Dec. 23, 2003 now U.S. Pat. No. 7,100,338.
U.S. Appl. No. 10/746,596, filed Dec. 23, 2003 now U.S. Pat. No. 7,013,612.
U.S. Appl. No. 10/818,469, filed Apr. 5, 2004.
U.S. Appl. No. 10/823,410, filed Apr. 13, 2004 now U.S. Pat. No. 7,703,256.
U.S. Appl. No. 12/767,983, filed Apr. 27, 2010.
U.S. Appl. No. 12/960,679, filed Dec. 6, 2010.
U.S. Appl. No. 11/325,704, filed Jan. 5, 2006.
U.S. Appl. No. 11/425,338, filed Jun. 20, 2006.
U.S. Appl. No. 12/707,724, filed Feb. 18, 2010.
U.S. Appl. No. 11/759,172, filed Jun. 6, 2007 now U.S. Pat. No. 7,758,011.
U.S. Appl. No. 12/832,281, filed Jul. 8, 2010 now U.S. Pat. No. 8,430,372.
U.S. Appl. No. 13/857,759, filed Apr. 5, 2013.
U.S. Appl. No. 14/697,387, filed Apr. 27, 2015.
U.S. Appl. No. 14/789,607, filed Jul. 1, 2015 now U.S. Pat. No. 9,732,512.
U.S. Appl. No. 15/471,179, filed Mar. 28, 2017 now U.S. Pat. No. 10,053,856.
U.S. Appl. No. 15/663,081, filed Jul. 28, 2017 now U.S. Pat. No. 10,443,896.
U.S. Appl. No. 12/629,179, filed Dec. 2, 2009.
U.S. Appl. No. 12/542,132, filed Aug. 17, 2009 now U.S. Pat. No. 8,312,678.
U.S. Appl. No. 13/667,816, filed Nov. 2, 2012 now U.S. Pat. No. 8,656,649.
U.S. Appl. No. 14/153,925, filed Jan. 13, 2014 now U.S. Pat. No. 9,222,263.
U.S. Appl. No. 13/403,463, filed Feb. 23, 2012 now U.S. Pat. No. 8,833,714.
U.S. Appl. No. 14/444,405, filed Jul. 28, 2014.
U.S. Appl. No. 14/500,919, filed Sep. 29, 2014 now U.S. Pat. No. 9,611,652.
U.S. Appl. No. 15/452,388, filed Mar. 7, 2017.
U.S. Appl. No. 15/621,092, filed Jun. 13, 2017 now U.S. Pat. No. 10,077,562.
U.S. Appl. No. 15/621,739, filed Jun. 13, 2017 now U.S. Pat. No. 10,106,987.
U.S. Appl. No. 16/129,606, filed Sep. 12, 2018 now U.S. Pat. No. 10,731,355.
U.S. Appl. No. 16/592,521, filed Oct. 3, 2019 now U.S. Pat. No. 11,035,126.
U.S. Appl. No. 17/347,291, filed Jun. 14, 2021.
U.S. Appl. No. 14/030,615, filed Sep. 18, 2013.
U.S. Appl. No. 14/005,784, filed Jun. 13, 2014 now U.S. Pat. No. 9,530,916.
U.S. Appl. No. 15/386,911, filed Dec. 21, 2016.
U.S. Appl. No. 14/205,613, filed Mar. 12, 2014 now U.S. Pat. No. 9,147,785.
U.S. Appl. No. 14/840,206, filed Aug. 31, 2015 now U.S. Pat. No. 9,608,559.
U.S. Appl. No. 15/470,533, filed Mar. 27, 2017 now U.S. Pat. No. 10,103,682.
U.S. Appl. No. 16/139,853, filed Sep. 24, 2018.
U.S. Appl. No. 16/754,519, filed Apr. 8, 2020.
U.S. Appl. No. 10/810,114, filed Mar. 25, 2004 now U.S. Pat. No. 7,513,080.
U.S. Appl. No. 13/545,808, filed Jul. 10, 2012.
U.S. Appl. No. 13/724,976, filed Dec. 21, 2012 now U.S. Pat. No. 9,086,185.
U.S. Appl. No. 14/789,714, filed Jul. 1, 2015.
U.S. Appl. No. 13/712,474, filed Dec. 12, 2012 now U.S. Pat. No. 8,844,234.
U.S. Appl. No. 14/469,153, filed Aug. 26, 2014.
U.S. Appl. No. 16/539,960, filed Aug. 13, 2019 now U.S. Pat. No. 10,859,292.
U.S. Appl. No. 17/110,621, filed Dec. 3, 2020.
U.S. Appl. No. 15/798,023, filed Oct. 30, 2017 now U.S. Pat. No. 10,640,980.
U.S. Appl. No. 13/965,441, filed Aug. 13, 2013 now U.S. Pat. No. 8,925,263.
U.S. Appl. No. 14/558,356, filed Dec. 2, 2014 now U.S. Pat. No. 9,306,490.
U.S. Appl. No. 16/821,885, filed Mar. 17, 2020 now U.S. Pat. No. 11,041,310.
U.S. Appl. No. 17/353,483, filed Jun. 21, 2021.
U.S. Appl. No. 17/203,481, filed Mar. 16, 2021 now U.S. Pat. No. 11,352,793.
U.S. Appl. No. 17/833,252, filed Jun. 6, 2022.
U.S. Appl. No. 17/203,483, filed Mar. 16, 2021.
U.S. Appl. No. 17/371,888, filed Jul. 9, 2021.
U.S. Appl. No. 29/812,325, filed Oct. 20, 2021.
U.S. Appl. No. 16/866,080, filed May 4, 2020 now U.S. Pat. No. 11,085,188.
U.S. Appl. No. 17/398,146, filed Aug. 10, 2021.
U.S. Appl. No. 16/360,923, filed Mar. 21, 2019 now U.S. Pat. No. 10,903,785.
U.S. Appl. No. 17/156,469, filed Jan. 22, 2021.
U.S. Appl. No. 16/714,060, filed Dec. 13, 2019 now U.S. Pat. No. 10,948,002.
U.S. Appl. No. 17/199,947, filed Mar. 12, 2021.
U.S. Appl. No. 13/720,461, filed Dec. 19, 2012.
U.S. Appl. No. 15/628,927, filed Jun. 21, 2017 now U.S. Pat. No. 10,634,175.
U.S. Appl. No. 16/824,651, filed Mar. 19, 2020 now U.S. Pat. No. 11,333,179.
U.S. Appl. No. 12/855,850, filed Aug. 13, 2010 now U.S. Pat. No. 10,054,336.
U.S. Appl. No. 12/856,827, filed Aug. 16, 2010 now U.S. Pat. No. 9,920,958.
U.S. Appl. No. 12/856,844, filed Aug. 16, 2010 now U.S. Pat. No. 8,627,617.
U.S. Appl. No. 16/106,299, filed Aug. 21, 2018 now U.S. Pat. No. 10,502,457.
U.S. Appl. No. 08/383,477, filed Feb. 2, 1995.
U.S. Appl. No. 08/285,280, filed Aug. 1, 1994 now U.S. Pat. No. 5,557,903.
“Ace Clamp Cut Sheet | 5031 Z1-2,” Ace Clamp, Nov. 2018, 1 page.
“ADJ Heavy Duty Lighting C-clamp,” Sweetwater, 2011, 3 pages [retrieved online from: http://web.archive.org/web/20111112045516/http://www.sweetwater.com/store/detail/CClamp/].
“AEROCOMPACT® CompactMetal TR Checklist,” Aerocompact, Aug. 30, 2021, CL TR ENG EU V1, 2 pages [retrieved online from: cdn.intelligencebank.com/eu/share/8MnR/YJMd/ZBPL4/original/AEROCOMPACT_CL_TR_ENG_V1_WEB].
“AEROCOMPACT® CompactMetal TR,” Aerocompact, Sep. 2, 2021, PB TR ENG EU V1, 3 pages[retrieved online from: cdn.intelligencebank.com/eu/share/8MnR/qMBXP/VYrWa/original/AEROCOMPACT_Leaflet_TR_ENG_V1_WEB].
“Aluminum,” Wikipedia, Jul. 3, 2016, 21 pages [retrieved Oct. 3, 2017 from: en.wikipedia.org/w1ki/Aluminium].
“ClampFit-H Product Sheet,” Schletter GmbH, Kirchdorf, Germany, Nov. 2015, 2 pages.
“CompactMETAL TR59 | TR74 Assembly Instructions,” Aerocompact, Sep. 2021, 27 pages.
“ERK-TRB-C16 RiverClack Roofing Profile Interface,” Enerack, 2021, 2 pages [retrieved online from: www.enerack.com/erk-trb-c16-riverclack-roofing-profile-interface-p00231p1.html].
“Grounding Clip for Electrical Protection,” ARaymond, 2016, 2 pages.
“Installation Instructions for Rayvolt®—Grounding clip for Framed PV Modules,” ARaymond, Feb. 2016, Version 2.2, 1 page.
“Kee Walk—Roof Top Walkway,” Simplified Safety, 2011, 3 pages [retrieved online from: https://web.archive.org/web/20120207115154/http://simplifiedsafety.com/solutions/keewalk-rooftop-walkway/].
“KeeLine® the Safety Solution for Horizontal Life Lines,” Kee Safety, Ltd. 2012, 2 pages [retrieved online from: https://web.archive.org/web/20120305120830/http://keesafety.co.uk/products/kee_line].
“Miller Fusion Roof Anchor Post,” Miller Fall Protection, 2011, 3 pages [retrieved online from: https://web.archive.org/web/20111211154954/www.millerfallprotection.com/fall-protection-products/roofing-products/miller-fusion-roof-anchor-post].
“Oil Canning—Solutions,” Pac-Clad, 2001, 2 pages [retrieved online from: pac-clad.com/aiapresentation/sld021.html]
“Oil Canning,” Metal Construction Association, 2003, Technical Bulletin #95-1060, 2 pages.
“REES-Snow Retention Systems,” Weerbewind, 2010, 3 pages [retrieved online from: https://web.archive.org/web/20100310075027/www.rees-oberstdorf.de/en/products/snow-retention-system.html].
“Solar mount. System,” Schletter GmbH, 2012, 1 page [retrieved online from: https://web.archive.org/web/20120316154604/www.schletter.de/152-1-Solar-mounting-systems.html].
“Wiley Grounding & Bonding Solutions,” Hubbell, 2020, 2 pages [retrieved online from: www.hubbell.com/wiley/en/grounding-and-bonding].
“Universal Clamps Brochure for Web,” Universal Clamps, 2020, 2 pages.
Gallo “Oil-Canning,” Metal Roofing Alliance, Ask-the-experts forum, Jun. 7, 2005, 4 pages [retrieved online from: www.metalroofingalliance.net/v2/forums/printview.cfm?action=mboard.members/viewmessages&ForumTopicID=4921&ForumCategoryID=1].
Haddock “History and Materials,” Metalmag, Metal roofing from A (Aluminum) to Z (Zinc)—Part I, Sep./Oct. 2001, 4 pages.
Haddock “Metallic Coatings for Carbon Steel,” Metalmag, Metal roofing from a (Aluminum) to Z (Zinc)—Part II, Nov./Dec. 2001, 8 pages.
International Search Report and Written Opinion for International (PCT) Patent Application No. PCT/US2012/070653, dated May 31, 2013 11 pages.
International Preliminary Report on Patentability for International (PCT) Patent Application No. PCT/US2012/070653, dated Jul. 10, 2014 8 pages.
Official Action for U.S. Appl. No. 13/720,461, dated May 23, 2014 19 pages.
Official Action for U.S. Appl. No. 13/720,461, dated Oct. 8, 2015 23 pages.
Official Action for U.S. Appl. No. 13/720,461, dated May 19, 2016 20 pages.
Official Action for U.S. Appl. No. 15/628,927, dated Apr. 12, 2018 15 pages.
Official Action for U.S. Appl. No. 15/628,927, dated Dec. 14, 2018 19 pages.
Official Action for U.S. Appl. No. 15/628,927, dated Apr. 5, 2019 13 pages.
Official Action for U.S. Appl. No. 15/628,927, dated Oct. 10, 2019 12 pages.
Notice of Allowance for U.S. Appl. No. 15/628,927, dated Jan. 23, 2020 9 pages.
Official Action for U.S. Appl. No. 16/824,651, dated May 5, 2020 21 pages.
Official Action for U.S. Appl. No. 16/824,651, dated Jul. 2, 2020 19 pages.
Official Action for U.S. Appl. No. 16/824,651, dated Mar. 1, 2021 15 pages.
Official Action for U.S. Appl. No. 16/824,651, dated Jul. 29, 2021 18 pages.
Notice of Allowance for U.S. Appl. No. 16/824,651, dated Jan. 5, 2022 11 pages.
“Fix2000 check list,” Schletter GmbH, last updated Jul. 2010, 1 page.
“S-5! WindClamp™ Install,” Metal Roof Innovations, Ltd., 2014, 1 page.
“Standing Seam RiverClack Clamp,” Shanghai Woqin New Energy Technology Co., Ltd., 2018, 4 pages [retrieved online on Mar. 23, 2022 from: www.wochnmount.com/Details.html?product_id=36].
“Wind Clamps for Metal Roofs,” Metal Roof Innovations, Ltd., 2017, Version 081717, 2 pages.
“Wind Clamp Ultra DEK,” Metal Roof Innovations, Ltd., Mar. 7, 2011, Drawing No. WC14-A-0-A_CCD, 1 page.
“Wind Clamp Double LOK,” Metal Roof Innovations, Ltd., Mar. 7, 2011, Drawing No. WC15-A-0-A_CCD, 1 page.
“Code: The SR-EC-010,” Lockseam Ltd., 2018, Datasheet SR-EC-010 Version 2.0, 6 pages.
“EZ Grip Metal Deck Mount,” SunModo Corp., 2019, 1 page.
“EZ Grip Metal Deck Mount,” SunModo Corp., 2019, Product page, 3 pages [retrieved online May 30, 2019 from: sunmodo.com/product/ez-grip-metal-deck-mount/#].
IDEEMATEC Tracking & Mounting Systems [online], Apr. 2008, [retrieved Mar. 6, 2012], Retrieved from http://www.ideematec.de.
“LM-KS-700,” Lumax Energy, 2018, 1 page.
“LM-TBR-VL,” Lumax Energy, Oct. 2018, 1 page [retrieved online from: https://lumaxenergy.co.za/wp-content/uploads/2018/12/Lumax-Energy-LM-TBR-VL.pdf/].
“Metal Roof Deck Mount Kit,” SunModo Corp., Oct. 16, 2018, Product Drawing, 1 page.
“New ‘Alzone 360 system’”, Arrid, 2008, 34 pages [retrieved online from: https://web.archive.org/web/20120317120735/www.arrid.com.au/?act=racking_parts].
“Non-Penetrative Clamps with Roofs,” Clenergy, Dec. 2021, Datasheet, 5 pages.
“PV-ezRack Klip-lok Interface,” Clenergy, 2020, 1 page.
“PV-ezRack SolarRoof-Black Anodized,” Clenergy, 2020, 4 pages.
“Slot definition,” Merriam-Webster Dictionary, 2022, 1 page [retrieved online Aug. 24, 2022 from www.merriam-webster.com/dictionary/slot].
“Standing Seam Rail Free One Sheet,” SunModo, Corp., 2020, 2 pages.
“SunDock™ Standing Seam Rail-Free Attachment System,” SunModo Corp., 2018, 1 page.
“SunDock Standing Seam PV Mounting System Installation Manual,” SunModo, 2019, Doc. No. D10160-V006, 14 pages.
“Universal Klip-lok Interface pre-assembly with Cross Connector Clamp,” Clenergy, 2020, 1 page.
“Universal Klip-lok Interface pre-assembly with Tin Interface A with ezClick module,” Clenergy, 2020, 1 page.
U.S. Appl. No. 29/845,330, filed Jul. 6, 2022.
U.S. Appl. No. 18/070,135, filed Nov. 28, 2022.
“MLPE Mount,” Unirac, Dec. 2016, 1 page.
“QRail® System, Installation Manual,” Quick Mount PV, Jul. 2019, Rev. 4.2, 48 pages.
“Rail System,” Pegasus Solar, 2021, 2 pages.
“ProteaBracket™ Install Instructions,” Metal Roof Innovations, Ltd., 2022, 2 pages.
“ProteaBracket™ Brochure,” Metal Roof Innovations, Ltd., 2019, 2 pages.
Related Publications (1)
Number Date Country
20220275813 A1 Sep 2022 US
Provisional Applications (1)
Number Date Country
61581305 Dec 2011 US
Continuations (3)
Number Date Country
Parent 16824651 Mar 2020 US
Child 17745528 US
Parent 15628927 Jun 2017 US
Child 16824651 US
Parent 13720461 Dec 2012 US
Child 15628927 US