1. Technical Field
The present disclosure relates to mounting devices, and particularly, to a mounting device for securing an electronic component.
2. Description of Related Art
Many electronic components, such as switches, electricity meters, and breakers, are usually mounted to a support base via a mounting rail. Typically, the mounting rail includes a latching member for firmly securing the mounting rail on the support base. Although this type of latching member is somewhat useful, its complicated structure makes it cumbersome and time consuming to assemble the electronic component to or remove the electronic component from the support base.
Therefore, what is needed is a new mounting device to solve the problems described above.
Many aspects of the embodiments can be better understood with references to the following drawings. The components in the drawings are not necessarily drawn to scale, the emphasis instead being placed upon clearly illustrating the principles of the embodiments. Moreover, in the drawings, like reference numerals designate corresponding parts throughout the views.
The disclosure is illustrated by way of example and not by way of limitation in the figures of the accompanying drawings in which like references indicate similar elements. It should be noted that references to “an” or “one” embodiment in this disclosure are not necessarily to the same embodiment, and such references mean at least one.
Referring to
A first guide portion 111 and two second guide portions 112 are formed on the top surface 11. The two second guide portions 112 are arranged at the same side of the first guide portion 111, parallel to the first guide portion 111, and spaced from the first guide portion 111 by a set distance (labeled as L).
The fixing board 20 includes a first edge 201 and a second edge 202 opposite to the first edge 201. In an embodiment, the distance between the first and the second edges 201, 202 (namely the lateral size of the fixing board 20) is equal to the distance L between the first and the second guide portions 111, 112. The first and the second guide portions 111, 112 cooperatively form the first track. The fixing board 20 is capable of sliding on the top surface 11 along the first track.
In an embodiment, at least one first projection 1110 protrudes from the first guide portion 111 toward the second guide portions 112. The first projection 1110 is located above the top surface 11, such that the first projection 1110 and the top surface 11 cooperatively form a first guiding groove 113. The first guiding groove 113 receives the first edge 201 of the fixing board 20.
The two second guide portions 112 are spaced from each other to cooperatively form the second track. The latching member 30 is capable of sliding on the top surface 11 along the second track. In an embodiment, each of the second guide portions 112 includes a second projection 1120, and the two second projections 1120 are facing each other. Each second projection 1120 is located above the top surface 11, such that the second projections 1120 and the top surface 11 cooperatively form two second guiding grooves 114.
Referring to
The latching member 30 further includes an elastic element 306 made of elastic material, such as rubber for example. The elastic element 306 is configured for positioning the latching member 30, and further providing a resilient force to the latching member 30 to allow the latching member 30 to push the fixing board 20 along the second track. The fixing board 20 can abut firmly against the support base 10 and the movement of the fixing board 20 along the first track is limited by the latching member 30.
In an embodiment, the elastic element 306 includes a number of ribs 301 and a positioning post 302 connected to the ribs 301. Each rib 301 has two ends respectively connected to the interior sidewalls 3001 of the side surfaces 3000. In this case, a fixing hole 110 and a sliding slot 115 adjacent to the fixing hole 110 are defined in the top surface 11 and between the two second guide portions 112. The support base 10 further includes a sidewall 116, and the distance between the sliding slot 115 and the sidewall 116 is less than that between the fixing hole 110 and the sidewall 116. The sliding slot 115 includes an inclined surface 1150 inclined from the top surface 11 and running downwardly through the sidewall 116.
In assembly, a user can push the latching member 30 to allow the latching member 30 to slide toward the first guide portion 111, and then the positioning post 302 is guided along the inclined surface 1150 of the sliding slot 115 until the positioning post 302 is inserted into the fixing hole 110. The positioning post 302 is slightly wider than the fixing hole 110, and is tightly fitted within the fixing hole 110. The latching member 30 is thus held in position. In an embodiment, a front portion of the main body 300 further defines a latching groove 303 with a vertical portion 3030. When the latching member 30 is held in position, the space between the vertical portion 3030 and the first guide portion 111 is less than that between the first and the second guide portions 111, 112 (labeled as L as described above, namely the lateral size of the fixing board 20).
When the user pulls the latching member 30 away from the first guide portion 111, and because the positioning post 302 is tightly fit in the fixing hole 110, the positioning post 302 is elastically deformed, and the ribs 301 are elastically deformed with the positioning post 302. When the pulling of the latching member 30 is stopped, the ribs 301 and the positioning post 302 rebound and push the latching member 30 to move back until the vertical portion 3030 contacts the second edge 202 of the fixing board 20. Since the vertical portion 3030 is spaced from the first guide portion 111 by a distance L larger than that when the latching member 30 is located at its original position, the ribs 301 and the positioning posts 302 are still in an elastically deformed state when the vertical portion 3030 contacts the second edge 202 of the fixing board 20. Thus, the fixing board 20 can abut firmly against the support base 10 because the remaining resilient force of the ribs 301 and the positioning post 302 pushes the second edge 202 via the vertical portion 3030. In an alternative embodiment, the latching groove 303 may be omitted from the main body 300. In this case, optionally, the vertical portion 3030 may be replaced by the front portion of the latching member 30, then the latching member 30 directly pushes the fixing board 20 via its front portion.
In disassembly, the user needs to pull the latching member 30 to cause the latching member 30 to stop applying the resilient force to the fixing board 20. In an embodiment, the main body 300 further includes a ring 304, opposite to the latching groove 303, and the user can exert the pulling force on the latching member 30 via the ring 304.
Referring to
It is to be understood, even though information and advantages of the present embodiments have been set forth in the foregoing description, together with details of the structures and functions of the present embodiments, the disclosure is illustrative only; and that changes may be made in detail, especially in matters of shape, size, and arrangement of parts within the principles of the present embodiments to the full extent indicated by the broad general meaning of the terms in which the appended claims are expressed.
Number | Date | Country | Kind |
---|---|---|---|
2012 1 0034947 | Feb 2012 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
4067529 | Milcoy | Jan 1978 | A |
4921445 | Herbert | May 1990 | A |
5598322 | Von Arx et al. | Jan 1997 | A |
5904592 | Baran et al. | May 1999 | A |
6120000 | Aeschbach et al. | Sep 2000 | A |
6371435 | Landis et al. | Apr 2002 | B1 |
6563697 | Simbeck et al. | May 2003 | B1 |
6563710 | Okuda et al. | May 2003 | B1 |
7059898 | Barile | Jun 2006 | B2 |
7374453 | Allcock et al. | May 2008 | B1 |
7522428 | Nguyen | Apr 2009 | B2 |
7758368 | Schelonka et al. | Jul 2010 | B2 |
7980891 | Molnar | Jul 2011 | B2 |
8003899 | WenLong et al. | Aug 2011 | B2 |
8062061 | Lim et al. | Nov 2011 | B2 |
8066239 | Molnar et al. | Nov 2011 | B2 |
8226433 | Correll et al. | Jul 2012 | B1 |
8651442 | Takaya et al. | Feb 2014 | B2 |
20080299820 | Schelonka et al. | Dec 2008 | A1 |
20100128448 | WenLong et al. | May 2010 | A1 |
20100314522 | Molnar et al. | Dec 2010 | A1 |
20140139976 | Santoni et al. | May 2014 | A1 |
20140226287 | V et al. | Aug 2014 | A1 |
Number | Date | Country |
---|---|---|
9103971 | Jun 1991 | DE |
29506579 | Jun 1995 | DE |
1833132 | Sep 2007 | EP |
2582000 | Apr 2013 | EP |
2007189102 | Jul 2007 | JP |
4844911 | Dec 2011 | JP |
Number | Date | Country | |
---|---|---|---|
20130214109 A1 | Aug 2013 | US |