The subject matter described and/or illustrated herein relates generally to electrical connectors, and, more particularly, to electrical connectors that include contact sub-assemblies.
Electrical connectors that are commonly used in telecommunication systems provide an interface between successive runs of cables and/or between cables and electronic devices of the system. Some of such electrical connectors, for example modular jacks, are configured to be joined with a mating plug and include a contact sub-assembly having an array of mating contacts. Each of the mating contacts includes a mating interface that engages a corresponding contact of the mating plug to electrically connect the mating plug to the electrical connector.
The mating contacts are typically held in the array by one or more support blocks. The support block holds the mating contacts in the predetermined pattern of the array. Specifically, the support block includes a plurality of openings that are spaced apart along the length of the support block. Each of the mating contacts extends through a corresponding one of the openings. The spacing of the openings matches the predetermined pattern of the array and spaces the mating contacts apart from each other to prevent adjacent mating contacts from shorting. The array of mating contacts is mounted on a base of the contact sub-assembly. The base is held within a housing of the modular jack. The housing includes an opening that receives the mating plug therein. The base holds the array of mating contacts proximate the housing opening such that each of the mating contacts is positioned to engage the corresponding contact of the mating plug.
The support block is often used to mount the array of mating contacts on the base. For example, in one known method for mounting the array of mating contacts on the base using the support block, the base includes opposing notches that define ledges of the base. Opposite ends of the support block are received within corresponding ones of the notches and rest on the corresponding ledge to hold the support block, and thus the array of mating contacts, on the base. But, known methods for mounting the array of mating contacts on the base using the support block are not without disadvantages. For example, the connection between the support block and the base may be insufficient to hold the array of mating contacts on the base, such as, but not limited to, during mating and/or unmating of the mating plug and modular jack, during installation, and/or during shipping. Moreover, and for example, the connection between the support block and the base may not accurately align and/or position the mating contacts relative to the base, which may cause misalignment of the mating contacts relative to the corresponding contacts of the mating plug.
In one embodiment, a contact sub-assembly is provided for an electrical connector. The contact sub-assembly includes a base having a mounting opening, and an array of mating contacts. Each mating contact includes a mating interface. A support block extends a length along a central longitudinal axis. Openings extend through the support block. The openings are spaced apart from one another along the length of the support block. The mating contacts extend through corresponding openings. A mounting post extends outwardly from the support block in a direction that is non-parallel to the central longitudinal axis of the support block. The mounting post is received within the mounting opening of the base.
In another embodiment, an electrical connector includes a housing and a contact sub-assembly held by the housing. The contact sub-assembly includes a base having a mounting opening, and an array of mating contacts. Each mating contact includes a mating interface. A support block extends a length along a central longitudinal axis. Openings extend through the support block. The openings are spaced apart from one another along the length of the support block. The mating contacts extend through corresponding openings. A mounting post extends outwardly from the support block in a direction that is non-parallel to the central longitudinal axis of the support block. The mounting post is received within the mounting opening of the base.
The connector 100 includes a contact sub-assembly 110 (
In the exemplary embodiment, a plurality of communication wires 122 are attached to terminating contacts 124 of the contact sub-assembly 110. The terminating contacts 124 are located at the terminating end portion 116 of the contact sub-assembly 110. Each terminating contact 124 is electrically connected to a corresponding one of the mating contacts 118. The wires 122 extend from a cable 126 and are terminated to the terminating contacts 124. Optionally, the terminating contacts 124 include insulation displacement connections (IDCs) for terminating the wires 122 to the contact sub-assembly 110. Alternatively, the wires 122 may be terminated to the contact sub-assembly 110 via any other type of connection, such as, but not limited to, a soldered connection, a press-fit connection (for example using compliant pins), and/or the like. In the exemplary embodiment, eight wires 122 arranged as differential pairs are terminated to the connector 100. However, any number of wires 122 may be terminated to the connector 100, whether or not the wires 122 are arranged in differential pairs. Each wire 122 is electrically connected to a corresponding one of the mating contacts 118 via the corresponding terminating contact 124, a printed circuit 132 (
In the exemplary embodiment, the contact sub-assembly 110 includes an array 137 of a plurality of the circuit contacts 139. The circuit contacts 139 electrically connect the mating contacts 118 to the printed circuit 132. Each circuit contact 139 is optionally separably engaged with and electrically connected to a corresponding one of the mating contacts 118, such that each circuit contact 139 is discrete from the corresponding mating contact 118. As used herein, the term “discrete” is intended to mean constituting a separate part or component. Alternatively, one or more of the circuit contacts 139 is not discrete and separable from the corresponding mating contact 118, but rather is formed integrally with the corresponding mating contact 118.
The contact sub-assembly 110 also includes the terminating end portion 116, which includes a terminating portion body 146 extending from the printed circuit 132. The terminating portion body 146 includes the terminating contacts 124. The terminating portion body 146 is sized to substantially fill the rear portion of the housing cavity 108 (
Optionally, the contact sub-assembly 110 includes a printed circuit 140 that is received within an interior cavity 160 (
The array side 156 of the base 130 includes a pair of mounting ears 164. In the exemplary embodiment, the mounting ears 164 are each located along the length of the base 130 proximate the end 150, and are each located along the width of the base 130 proximate a corresponding one of the side walls 152 and 154. A side portion 166 of one or more of the mounting ears 164 optionally defines a portion of the corresponding side wall 152 and 154. Similarly, a rear portion 168 of one or more of the mounting ears 164 optionally defines a portion of the base end 150. Each mounting ear 164 includes one of the mounting openings 138. Specifically, at each of the mounting ears 164, a corresponding one of the mounting openings 138 extends into the array side 156 of the base 130. An optional channel 170 extends into the array side 156 between the side walls 152 and 154 of the base 130. The channel 170 is configured to receive an extension 172 (
Although two are shown, the base 130 may include any number of the mounting ears 164, each of which may include any number of the mounting openings 138. Each mounting ear 164 may be located at any other position along the length and along the width of the base 130 in addition or alternatively to the locations shown herein. Although the base 130 is shown herein as including two mounting openings 138, the base 130 may include any number of mounting openings 138 for receiving any number of mounting posts 136 (FIGS. 2 and 6-8). In some alternative embodiments, the channel 170 does not intersect the mounting opening 138a and/or the mounting opening 138b. Moreover, the channel 170 may extend within the base 130 along only a portion of the distance between the mounting openings 138. In some embodiments, the base 130 includes a plurality of channels 170 that are spaced apart from each other along the length and/or the width of the base 130. When extending along only a portion of the distance between the mounting openings 138, the channel 170 may extend at any location therebetween. Although shown as extending between the mounting openings 138a and 138b, the channel 170 may alternatively extend within the base 130 at a location that is not between the mounting openings 138a and 138b. In the exemplary embodiment, the channel 170 includes the general shape of a parallelepiped. But, in addition or alternative to the parallelepiped shape, the channel 170 may include any other shape for receiving an extension 172 including any shape.
Each of the mounting openings 138 includes a mount 184. As will be described below, the mount 184 engages the corresponding mounting post 136 (FIGS. 2 and 6-8) of the support block 134 to hold the mating contact array 117 (
The mount 184 of one or more of the mounting openings 138 may additionally or alternatively be located at any other location along the depth D of the mounting opening 138 than the bottom segment. For example, in some alternative embodiments, the mount 184 and the upper segment 186 are reversed, such that the mount 184 forms the upper segment of the mounting opening 138 and the upper segment 186 forms the bottom segment of the mounting opening 138. Another example of a differently located mount 184 is a mount 184 that forms an intermediate segment of the mounting opening 138 that extends between the upper segment 186 and a bottom segment of the mounting opening 138. Yet another example of a differently located mount 184 is a mount 184 that extends along an approximate entirety of the depth D of the corresponding mounting opening 138, wherein the approximate entirety of the depth D does not include the chamfer 187 (if the chamfer 187 is included).
Although the mount 184 of each mounting opening 138 is shown herein as having the regular hexagonal cross-sectional shape, each mount 184 may include any other cross-sectional shape for engagement with a mounting post 136 that includes any shape. For example, each mount 184 may include any other hexagonal cross-sectional shape besides the shape of a regular hexagon. Moreover, each mount 184 may include any other multi-sided cross-sectional shape. As used herein, the term “multi-sided” is intended to mean having two or more sides. Examples of other multi-sided cross-sectional shapes besides hexagonal include, but are not limited to, triangular, quadrilateral, rectangular, square, a pentagon, an octagon, a hexadecagon, a salinon, a lune, a Reuleaux polygon, a tomoe, a magatama, a heptagon, an astroid, a deltoid, a superellipse, a dodecagon, a decagon, and/or the like. Each mount 184 may include any single-sided shape, such as, but not limited to, a circle, a henagon, an ellipse, an oval, a semi-circle, and/or the like. Each mount 184 may be referred to herein as a “multi-sided mount” and/or as a “hexagonal mount”.
Each mating contact 118 extends a length from a terminating end portion 196 to the tip end portion 198. An intermediate portion 200 extends between the terminating end portion 196 and the tip end portion 198 of each mating contact 118. Each mating contact 118 includes the mating interface 120, which extends between the intermediate portion 200 and the tip end portion 198. Specifically, the intermediate portion 200 extends from the terminating end portion 196 to the mating interface 120, and the mating interface 120 extends from the intermediate portion 200 to the tip end portion 198. In the exemplary embodiment, the terminating end portion 196 of each mating contact 118 engages and electrically connects to a corresponding one of the circuit contacts 139 (
The intermediate portion 200 of each mating contact 118 extends from the terminating end portion 196 to the mating interface 120. Optionally, the intermediate portion 200 of one or more of the mating contacts 118 includes a cross-over section that crosses over or under the intermediate portion 200 of an adjacent mating contact 118. In the exemplary embodiment, the cross-over sections are covered by the support block 135 such that the cross-over sections are not visible herein. Any number of the mating contacts 118 within the contact array 117 may include a cross-over section. The mating interface 120 of each mating contact 118 extends from the intermediate portion 200 to the tip end portion 198. In the exemplary embodiment, the mating interface 120 is a curved portion. However, the mating interface 120 may have other shapes, such as, but not limited to, straight, angled, and/or the like. The tip end portion 198 of each mating contact 118 includes a tip 202 and a leg 204. The leg 204 extends from the mating interface 120 to the tip 202. The tip 202 extends outwardly from the leg 204. Optionally, the leg 204 of each mating contact 118 is angled relative to the intermediate portion 200, as can be seen in
The support block 134 extends a length along a central longitudinal axis 206 from an end 208 to an opposite end 210. The support block 134 includes a base side 212 and an upper side 214 that is opposite the base side 212. Opposite sides 216 and 218 each extend from the base side 212 to the upper side 214. A plurality of openings 220 extend through the support block 134. In the exemplary embodiment, the openings 220 extend through the sides 216 and 218 and completely through the support block 134 therebetween. The openings 220 are spaced apart from each other along the length, and thus along the central longitudinal axis 206, of the support block 134. As can be seen in
The mounting posts 136 extend outwardly from the base side 212 of the support block 134. In the exemplary embodiment, the support block 134 includes two mounting posts 136a and 136b that extend outwardly at a corresponding end 208 and 210 of the support block 134. But, each mounting post 136 may extend from any location along the length of the support block 134. Each mounting post 136 extends a length along a central longitudinal axis 222 to a post end 224. In the exemplary embodiment, the central longitudinal axis 222 of each of the mounting posts 136 extends approximately perpendicular to the central longitudinal axis 206 of the support block 134 and to the length of the mating contacts 118. However, the central longitudinal axis 222 of each of the mounting posts 136 may extend at any other angle relative to the central longitudinal axis 206. Moreover, the central longitudinal axis 222 of each of the mounting posts 136 may extend at any other angle relative to the length of the mating contacts 118. Although two are shown, the support block 134 may include any number of the mounting posts 136 for reception within any number of mounting openings 138.
Each of the mounting posts 136 includes a mount 226. The mount 226 engages the mount 184 (
The support block 134 includes the extension 172. In the exemplary embodiment, the extension 172 extends outwardly from the base side 212 of the support block 134. The extension 172 is configured to be received within the channel 170 (
The relative size and shape between the mounts 184 of the mounting openings 138 and the mounts 226 of the mounting posts 136 may be selected to provide the interference fit therebetween. Alternatively, the mounts 226 and 184 of one or more of corresponding pairs of a mounting post 136 and a mounting opening 138, respectively, engage each other in a snap-fit. Although the exemplary mounts 226 and 184 shown herein include different shapes from each other, in some alternative embodiments, a mount 226 includes a substantially similar and/or the same shape as the corresponding mount 184. In other words, the interference fit between corresponding mounts 184 and 226 may be provided by substantially similar and/or the same shapes.
As used herein, the term “printed circuit” is intended to mean any electric circuit in which the conducting connections have been printed or otherwise deposited in predetermined patterns on a dielectric substrate.
Exemplary embodiments are described and/or illustrated herein in detail. The embodiments are not limited to the specific embodiments described herein, but rather, components and/or steps of each embodiment may be utilized independently and separately from other components and/or steps described herein. Each component, and/or each step of one embodiment, can also be used in combination with other components and/or steps of other embodiments. When introducing elements/components/etc. described and/or illustrated herein, the articles “a”, “an”, “the”, “said”, and “at least one” are intended to mean that there are one or more of the element(s)/component(s)/etc. The terms “comprising”, “including” and “having” are intended to be inclusive and mean that there may be additional element(s)/component(s)/etc. other than the listed element(s)/component(s)/etc. Moreover, the terms “first,” “second,” and “third,” etc. in the claims are used merely as labels, and are not intended to impose numerical requirements on their objects. Dimensions, types of materials, orientations of the various components, and the number and positions of the various components described and/or illustrated herein are intended to define parameters of certain embodiments, and are by no means limiting and are merely exemplary embodiments. Many other embodiments and modifications within the spirit and scope of the claims will be apparent to those of skill in the art upon reviewing the description and illustrations. The scope of the subject matter described and/or illustrated herein should therefore be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled. Further, the limitations of the following claims are not written in means-plus-function format and are not intended to be interpreted based on 35 U.S.C. §112, sixth paragraph, unless and until such claim limitations expressly use the phrase “means for” followed by a statement of function void of further structure.
While the subject matter described and/or illustrated herein has been described in terms of various specific embodiments, those skilled in the art will recognize that the subject matter described and/or illustrated herein can be practiced with modification within the spirit and scope of the claims.
Number | Name | Date | Kind |
---|---|---|---|
5924896 | Arnett et al. | Jul 1999 | A |
5947772 | Arnett et al. | Sep 1999 | A |
5975919 | Arnett et al. | Nov 1999 | A |
6350158 | Arnett et al. | Feb 2002 | B1 |
6641443 | Itano et al. | Nov 2003 | B1 |
7238060 | Lee et al. | Jul 2007 | B1 |
7601034 | Aekins et al. | Oct 2009 | B1 |
20020086586 | Shi et al. | Jul 2002 | A1 |
20040106329 | Wang et al. | Jun 2004 | A1 |
20060128228 | Wan et al. | Jun 2006 | A1 |
20070270043 | Pepe et al. | Nov 2007 | A1 |
20090023338 | He et al. | Jan 2009 | A1 |
20090042451 | He et al. | Feb 2009 | A1 |
20090203264 | Pepe et al. | Aug 2009 | A1 |
Number | Date | Country | |
---|---|---|---|
20110171858 A1 | Jul 2011 | US |