Tidal turbines are an increasingly attractive option for power generation. They have two distinct advantages over other so-called alternative energy sources, they are mounted below water and do not create the same environmental concerns as wind turbines and the tide itself is very predictable and, if the turbine is located in the right place, capable of generating large quantities of electricity reliably.
However, tidal turbines do have issues of their own, particularly if maintenance is required; frequently divers had to be employed to carry out any inspections required and repair necessary which is both costly and inconvenient. Various solutions have been proposed involving uncoupling the turbine and its surrounding nacelle from its mounting on a sea bed, raising the turbine and nacelle with a marine crane and transporting it to shore. Most solutions allow the turbine to be placed in one of two or more fixed positions with respect to the mounting (the so called turbine yaw) and a mechanism provided to move the turbine from one yaw portion to another in response to changes in the flow of the tide. Such devices are clearly cumbersome in use and require continual monitoring. More recently GB 2437533 B (SWANTURBINES LIMITED AT AL) 31 Oct. 2007 proposed a marine turbine and support for fixing to the bed of a body of water, the turbine and support comprising complementary male and female engaging portions such that when the turbine is lowered onto the support, the male and female portions contact one another. This provides an operational engagement there between. The male engaging portion comprises a first part for interfacing with the female engaging portion and a second part rotatable mounted relative to the first part such that the turbine rotates relative to the support during operation of the turbine to enable alignment of the turbine with a fluid flow, and where the first part of the male engaging portion is arranged to be located in the female engaging portion in a plurality of rotational orientations.
However, the proposals of GB2437533 have two distinct issues.
Firstly the power take off from the turbines is either taken separately in a cable away from the mount, or has a fixed plug into the male part described. In the first approach the cable is liable to be damaged as it is not well protected and will in any event tend to twist with yawing of the turbine. If the power connection is to the male part through the mount, the cable is protected but the twisting is even more severe with a likelihood of failure of the power take off, which will require divers to repair, negating the benefits of the demountable turbine.
Secondly the female socket part is likely to be difficult to manufacture and itself require maintenance.
According to the present invention in a marine turbine and tower combination in which the turbine is mountable on the tower, the turbine has a co-operating member to interact with co-operating members on the tower to enable the turbine to be mounted on the tower in a pre-determined alignment.
Advantageously the predetermined alignment enables the turbine to connect to electrical cables in the tower.
In one embodiment the co-operating member on the tower is a downwardly directed stud and the co-operating members on the tower comprise a substantially horizontal thruster plate mounted on top of the tower having a central aperture and a vertical reaction ring beneath the thruster plate, wherein when the turbine is mounted on the tower the stud extends through the aperture in the horizontal thruster plate, the stud being supported laterally by the thruster plate, and vertically by the reaction ring interacting with the stud.
Alignment is further aided with capture cylinder to help to locate the stud in the reaction ring.
It has been found that the best arrangements to ensure accurate alignment and good lateral support for the turbine is achieved when the horizontal thruster plate is has four parallel sides and the external profile of stud where it is within the horizontal thruster plate is correspondingly shaped so that the stud is a tight fit in the horizontal thruster plate when the turbine is in position on the tower. Ideally the four parallel sides form a square. Optionally, to enable efficient load transfer the corners of adjacent sides are cut-off.
In the arrangement of the previous paragraph the lower portion of the stud is best circular in cross section as is the aperture of the reaction ring; this makes for easy location of the stud in the reaction ring.
Other features of the invention are set out in the claims and in the following description.
In order that the invention might be more fully understood, one example will now be described with reference to the accompanying drawings, in which:
In
Each tower 30, which may be an individual tower or be part of a larger assembly on a frame, is lowered to the sea floor with or without a tidal turbine 10 attached using standard offshore lifting tackle connected to one or more eyes on the tower or a frame on which it is mounted. If a tower 30 is lowered without a turbine 10 mounted, the turbine 10 can be lowered subsequently and fitted to the tower 30 separately as described below.
Before this invention, if maintenance was required on one of the turbines the whole structure tower included had to be lifted again from the sea bed using lifting tackle connected to the eyes or divers sent to carry out the repair; either option was very expensive, with the present invention a single turbine needing repair can be lifted from its tower individually without disturbing the tower or any other turbine in the vicinity.
In
A substantially horizontal thruster plate 32 is mounted on top of the tower 30 having a central aperture 34, the pintle support frame 14 extending through the horizontal thruster plate 32 and supported laterally thereby. Bearings (not shown) within the pintle support frame 14 also provide lateral support to the pintle.
A vertical reaction interface 20 (see
To add strength to the structure and to distribute load cross bearers 38 link the reaction ring 36 to the horizontal thruster plate 32. When fully engaged with the tower the reaction ring 36 substantially supports the weight of the turbine vertically and the horizontal reaction ring 32 substantially supports it laterally.
Overturning moments are reacted horizontally between upper horizontal reaction ring 32 and the lower reaction ring 36.
Also visible in
Below the sides 22 and cut-offs 24, the pintle support frame is of a circular cross section whose diameter decreases as one travels towards the bottom of the pintle support frame. Near the bottom of the pintle support frame 14 around its perimeter is the vertical reaction interface 20 which sits on and within reaction ring 36 when the turbine is finally located on the tower 30. To help location of pintle support frame 14 in the reaction ring 36, a capture cylinder 37 is mounted above and below
A
It can be seen that in order for the two parts 51 and 52 of the underwater mateable connector to mate successfully and electrical connection established between the tidal turbine and its tower, alignment of the tower, both horizontally and vertically must be very precise. This invention enables the location of the turbine in the tower with the required degree of precision.
Although as described in
Although described with reference to a gravity based structure, the invention is equally applicable to a turbine mounted on a structure that is pin piled or one that is pile mounted. In these cases the tower 30 may be directly piled into the sea bed. However, the principles of the invention are exactly the same.
It can be seen that with the arrangements of the present invention the turbines self aligns with the tower when being lowered on the tower, so that accurate electrical connection is made between constituent parts of one or more underwater mateable connectors to join the electrical cables lead from the turbines to those in the tower.
Number | Date | Country | Kind |
---|---|---|---|
1503774.0 | Mar 2015 | GB | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/GB2016/050334 | 2/12/2016 | WO | 00 |