This application claims the benefit of priority of Japanese Patent Application Number 2016-178940 filed on Sep. 13, 2016, the entire content of which is hereby incorporated by reference.
The present disclosure relates to a mounting pedestal, a light-emitting device including a mounting pedestal, a moving-body lighting device including a mounting pedestal, and a moving body including a mounting pedestal.
A conventional mounting pedestal used in a wheeled vehicle (one example of the moving body) includes a stepped pedestal (one example of the mounting pedestal) and a light-emitting diode (one example of the light source) mounted on the stepped pedestal (for example, see Japanese Patent No. 4005377).
With this mounting pedestal, light-emitting diodes can be inclined in the anteroposterior direction of the wheeled vehicle as a result of the wheeled vehicle tail light including a stepped pedestal, making it possible to diversify the shape of the tail light.
However, there is a demand for a mounting pedestal that both increases the design freedom of the moving body and efficiently dissipates heat generated by the light source, so as to be applicable to various moving bodies.
In light of this, the present disclosure has an object to provide a mounting pedestal, light-emitting device, moving-body lighting device, and moving body capable of both increasing the design freedom of a moving body and efficiently dissipating heat generated by a light source.
In order to achieve the above object, according to one aspect of the present invention, a mounting pedestal used in a moving body and on which a light emitter is mounted, includes a metal layer and an insulating layer stacked on the metal layer. The insulating layer has a major surface facing in a direction of travel of the moving body and a heat escape port in which a joining component that joins the light emitter and the metal layer is disposed, and the mounting pedestal has a step which arranges the major surface into a plurality of major surfaces.
According to the present disclosure, it is possible to both increase the design freedom of a moving body and efficiently dissipate light source heat.
The figures depict one or more implementations in accordance with the present teaching, by way of examples only, not by way of limitations. In the figures, like reference numerals refer to the same or similar elements.
In
In
In
In
In
The following describes an embodiment with reference to the drawings. Note that the embodiment described below shows a specific example of the present disclosure. The numerical values, shapes, materials, elements, the arrangement and connection of the elements, etc., indicated in the following embodiment are mere examples, and therefore do not intend to limit the inventive concept. Therefore, among elements in the following embodiment, those not recited in any of the independent claims defining the broadest inventive concept are described as optional elements.
Moreover, “approximately” means, for example in the case of “approximately the same,” not only exactly the same, but what would be recognized as essentially the same as well. The same also applies to the term “vicinity”.
Note that the figures are schematic diagrams and do not necessarily depict precise illustrations. Additionally, like reference signs indicate like elements in the figures. As such, overlapping explanations of like elements are omitted or simplified.
Hereinafter a mounting pedestal, light-emitting device, moving-body lighting device, and moving body according to an embodiment of the present disclosure will be described.
First, mounting pedestal 200; light-emitting devices 11 and 12 each including mounting pedestal 200 mounted with light emitters 50; headlight 103 including mounting pedestal 200; and a moving body including mounting pedestal 200 according to this embodiment will be described with reference to
Note that the cross section in
In
As illustrated in
Wheeled vehicle body 101 includes four wheels 102 and a plurality of headlights 103. In this embodiment, wheeled vehicle 101 includes two headlights 103 in the front end of wheeled vehicle body 101 so as to illuminate an object located in the direction of travel of wheeled vehicle 100. One example of “direction of travel” is, for example, forward. Examples of the object include a road, a wall, and a person.
The two headlights 103 are disposed so as to have bilateral symmetry. As illustrated in (a) in
Housing 110 has a bowl shape with an open front, and front lens 112 is joined to the open front end of housing 110 via a sealing component. Front lens 112 is a lens through which light emitted by headlight 103 passes, and controls the distribution of the exiting light. The rear end of housing 110 includes insertion opening 110a, and when installed, light-emitting device 11 is inserted through insertion opening 110a. Note that light-emitting device 12 is also inserted through insertion opening 110a.
Reflector 113 is a reflective mirror that controls the distribution of light emitted by light-emitting devices 11 and 12 such that the light is emitted in the direction of travel. Reflector 113 is supported by housing 110, and may adjust the optical axis of light emitter 50 (optical axis of light source 52) up and down. The rear end of reflector 113 includes insertion opening 113a, and when installed, light-emitting devices 11 and 12 are inserted through insertion opening 113a.
Housing space 110b elongated in the left and right directions is formed between housing 110 and front lens 112, and high-beam light-emitting device 11 and low-beam light-emitting device 12 are disposed in housing space 110b.
As illustrated in
Mounting pedestal 200 is provided in housing 110 so as to orientate the optical axes of the plurality of mounted light emitters 50 in a desired direction. Mounting pedestal 200 has steps 201.
As illustrated in
In a direction approximately from left to right and a direction approximately from the front to the rear, mounting pedestal 200 extends in an elongated shape, and has a stepped structure defined by the plurality of steps 201. The plurality of steps 201 are arranged in the alignment direction. In this embodiment, mounting pedestal 200 is curved, but mounting pedestal 200 may be formed in a straight line. Moreover, as illustrated in (a) in
Steps 201 each include major surface 250 facing in the direction of travel of wheeled vehicle 100 and step side surface 259 approximately perpendicular to major surface 250. Steps 201 are formed by alternately forming major surface 250 and step side surface 259.
In this embodiment, as illustrated in (b) in
Each major surface 250 may be approximately parallel to a plane approximately perpendicular to the direction of travel, and may be a plane that intersects a plane approximately perpendicular to the direction of travel. As illustrated in (c) in
As illustrated in
In this embodiment, each depression 260 has inclined surface 261 inclined such that depression 260 gradually narrows from the opening of depression 260 toward the bottom of depression 260. Stated differently, each depression 260 is formed such that depression 260 gradually narrows from the opening of depression 260 in a direction opposite the direction of travel. In this embodiment, inclined surface 261 is formed on the side surface of depression 260 that is adjacent to first planar surface 251 (to be described later), but inclined surface 261 may be formed on the side surface of depression 260 that is adjacent to second planar surface 252 (to be described later). Note that as a substitute for depression 260, a protrusion may be formed that has an inclined surface inclined such that the protrusion gradually narrows in outer diameter from major surface 250 toward the tip end of the protrusion.
Each major surface 250 includes first planar surface 251 and second planar surface 252.
First planar surface 251 is a surface on which light source 52 of light emitter 50 is mounted, a surface that is partially surrounded by depressions 260, and a surface on which electrical line 220, which includes power supply surface 220a on which light source 52 is disposed, extends. Second planar surface 252 comprises the surface of major surface 250 excluding first planar surface 251 and depressions 260, and is flush with first planar surface 251.
Electrical line 220 is an electrical line that applies power to light source 52, and is provided so as to hug major surface 250 and step side surface 259. Electrical line 220 extends across first planar surface 251 from second planar surface 252 to second planar surface 252. More specifically, electrical line 220 extends from the area of second planar surface 252 that is on the upper side of the outer perimeter of depression 260 to, in the listed order, the surface in front of the upper bridge 262 (which is part of second planar surface 252), first planar surface 251, the surface in front of the lower bridge 262 (which is part of second planar surface 252), and the area of second planar surface 252 that is on the lower side of the outer perimeter of depression 260. In other words, since first planar surface 251 and second planar surface 252 are flush, electrical line 220 is formed in an approximately straight line.
Each side surface may be a planar surface that is parallel to a vertical direction, and, alternatively, may be a planar surface that intersects a vertical direction. More specifically, in mounting pedestal 200, in order in the direction of travel, each side surface may be closer to being parallel to a vertical direction than the preceding side surface. In this embodiment, the forwardmost (furthest in the direction of travel) side surface is approximately parallel to a vertical direction.
A plurality of screw holes 291 for inserting screws are formed in mounting pedestal 200. Moreover, mounting pedestal 200 includes, at least one end (one example of the end region), connector 270 connectable to an adjacent mounting pedestal 200. Connector 270 may be a hole in which a connecting component such as screw is inserted, and may have a known connecting structure; so long as it is capable of connecting another mounting pedestal 200, the method used is not limited. In this embodiment, mounting pedestals include low-beam mounting pedestal 300 and two high-beam mounting pedestals 200, and these may be connected together by connectors 270. Moreover, a plurality of low-beam mounting pedestals 300 and a plurality of high-beam mounting pedestals 200 may be provided.
Heat dissipating fins 60 are disposed on the rear surface (surface on the rear side) of mounting pedestal 200, cut out in a direction approximately perpendicular to the alignment direction. In other words, heat dissipating fins 60 are flat plate-shaped fins that extend in a vertical direction (which is, in this embodiment, a direction approximately perpendicular to the alignment direction). Note that heat dissipating fins 60 may be integrally formed with mounting pedestal 200, or may be a separate component connected to mounting pedestal 200. Moreover, heat dissipating fins 60 may further be cut out in the alignment direction.
As illustrated in
Examples of the material used for mounting pedestal 200 include, but are not limited to, metal, ceramic, and resin. Examples of the material used for a ceramic pedestal include aluminum oxide and aluminum nitride. Examples of the material used for a metal pedestal include aluminum alloy, iron alloy, and copper alloy having an insulating layer of insulating film formed on the rear surface thereof. Examples of the material used for a resin pedestal include glass epoxy.
In this embodiment, mounting pedestal 200 is a pedestal made of aluminum nitride having, as illustrated in
Mounting pedestal 200 includes metal layer 231 and insulating layer 232 that is stacked on metal layer 231 and defines major surfaces 250. Metal layer 231 is formed of, for example, an aluminum nitride material. Electrical line 220 is formed on major surfaces 250 defined by insulating layer 232, and spaces are provided on major surfaces 250 for placing light sources 52. In each of these spaces, heat escape port 233 that communicatively connects major surface 250 to metal layer 231 is formed. Stated differently, heat escape port 233 in which solder 59 for joining light source 52 and metal layer 231 is disposed is formed in insulating layer 232. An electroless nickel is used for plated thin film layer 231b, but another metal may be used. Moreover, heat escape port 233 is disposed offset from power supply surface 220a in an approximately horizontal direction (upward). Plated thin film layer 231 may be copper plating, may have a stacked structure configured of copper plating plated on nickel plating, and may be alloy plating of nickel and copper.
Light emitters 50 and major surfaces 250 of steps 201 correspond one-to-one. In this embodiment, in a front view, each light source 52 has a 0.8 mm by 0.8 mm square shape. Moreover, in this embodiment, each light source 52 is disposed in the vicinity of an approximately central region of major surface 250 so as to emit white light in the direction of travel of wheeled vehicle 100.
Light emitter 50 includes reflective resin 51, light source 52, phosphor 53, light-transmissive resin 54, and metal pedestal 70. In this embodiment, reflective resin 51, light source 52, phosphor 53, light-transmissive resin 54, metal pedestal 70, etc., form an LED package.
Reflective resin 51 is a white silicone resin added with a light reflective material such as titanium oxide. Reflective resin 51 is formed so as to surround the surrounding region of light source 52 and phosphor 53, and includes housing region 51a formed as a depression so as to house light source 52 and phosphor 53. Light source 52 and phosphor 53 are stacked in this order on the bottom of housing region 51a. Note that phosphor 53 is flush with the front surface of reflective resin 51, but phosphor 53 may protrude beyond reflective resin 51.
Note that in the manufacturing of light emitter 50, a dam surrounding light emitter 50 on mounting pedestal 200 may be formed to hold back reflective resin 51.
Light source 52 is a flip-chip mounted LED element directly connected face-down, and in this embodiment, is a blue light source that emits blue light. As illustrated in
As illustrated in
Light-emitting layer 52a is configured of, for example, a nitride semiconductor such as InGaN, and in one example, has a stacked structure configured of a p-type layer, an active layer, and an n-type layer stacked in this order. Anode electrode 52c is formed on the rear surface of light-emitting layer 52a. LED layer 52b is stacked on the front surface of light-emitting layer 52a.
LED layer 52b is configured as, for example an insulating layer such as a sapphire layer stacked on the front surface of an n-type layer made of, for example, N—GaN. The insulating layer of LED layer 52b has an uneven front surface which controls the distribution of emitted light. Cathode electrode 52d is formed on the front surface of LED layer 52b.
On the mounting surface side of light source 52, the surface on which cathode electrode 52d is formed is sunken relative to the surface on which anode electrode 52c is formed. In other words, the mounting surface side (rear surface side) of light source 52 has a stepped structure.
Metal pedestal 70 is approximately cuboid in shape, made of metal, and is a sub-mount layer on which light source 52 is stacked. Metal pedestal 70 is formed of, for example, an aluminum nitride material. Cathode pattern 71 and anode pattern 72 are formed arranged on the front surface side of metal pedestal 70.
Cathode electrode 52d of light source 52 is disposed so as to face cathode pattern 71, and anode electrode 52c of light source 52 is disposed so as to face anode pattern 72. Cathode pattern 71 and cathode electrode 52d are connected via Au bump 91, and anode pattern 72 and anode electrode 52c are connected via Au bump 92.
As illustrated in (a) and (b) in
Through-hole 79 that connects cathode pattern 71 and cathode electrode 73 is formed in metal pedestal 70. More specifically, through-hole 79 is structured as a through-hole formed in metal pedestal 70 that is filled with an electrically conductive material, and electrically connects cathode pattern 71 and cathode electrode 73.
As illustrated in
Light emitter 50 is provided on electrical line 220 (the region in which light source 52 is placed) of mounting pedestal 200 such that heat dissipating electrodes 75 provided on the mounting surface of light emitter 50 correspond to heat escape port 233 that communicatively connects major surface 250 to plated thin film layer 231b of metal layer 231. Heat dissipating electrodes 75 of light emitter 50 and plated thin film layer 231b on the bottom of heat escape port 233 are connected together by solder 59 (one example of the joining component). In other words, heat escape port 233 is a communicative path for joining light emitter 50 and plated thin film layer 231b of metal layer 231 via solder 59, and heat generated by light source 52 transfers to heat dissipating electrodes 75 and solder 59 and then transfers to plated thin film layer 231b of metal layer 231.
In a front view, phosphor 53 has a 0.8 mm by 0.8 mm square shape. Phosphor 53 is housed in housing region 51a and disposed on the front surface of light source 52. Phosphor 53 is disposed such that the center lines of light source 52 and phosphor 53 are aligned. The space between phosphor 53 and light source 52 is filled with light-transmissive resin 54. Phosphor 53 is a plate-shaped component containing a wavelength converter that converts the wavelength of a portion of light emitted by light emitter 50. The material used for the wavelength converter is not particularly limited. Examples include known materials such as YAG (Y3Al5O2) phosphor, CASN (CaAlSiN3) phosphor, and SiAlON phosphor. Phosphor 53 is formed by dispersing the wavelength converter in a material, such as resin, ceramic, or glass. The rear surface of phosphor 53 is adhered to the front surface of light source 52, which is the light-emission surface, via light-transmissive resin 54. Note that “center lines” refer to the respective lines that pass through the centers of light source 52 and phosphor 53 in a front view of light source 52 and phosphor 53.
Note that in this embodiment, SiAlON phosphor, which has yellow fluorescent characteristics, is used, and the blue light emitted by the blue light source passes through phosphor 53 whereby it is converted by the SiAlON phosphor into yellow light so as to produce an overall artificial white light. Note that white light may be produced by combining a blue light source that emits blue light, a red light source that emits red light, and a green light source that emits green light. Moreover, white light may be produced using another known technique. “Blue light” refers to light that appears blue to the naked eye, and “white light” refers to light at appears white to the naked eye.
Light-transmissive resin 54 is an adhesive for adhering light source 52 and phosphor 53.
Here, unless otherwise stated, among lens tubes 30, first light-transmissive components 41, and second light-transmissive components 42 illustrated in
As illustrated in
As illustrated in
As illustrated in
First surface of incidence 41a is an approximate semispherical depression formed to cover the surrounding region of light emitter 50, and is formed on the rear end surface of first light-transmissive component 41. First surface of incidence 41a is located in the vicinity of engagement protrusion 31 of lens tube 30. First surface of incidence 41a may be located so as to surround the sides of light emitter 50 such that light traveling towards the sides of light emitter 50 is also incident on first surface of incidence 41a.
First exit surface 41b is the front end surface of first light-transmissive component 41, and is a surface from which light passing through first light-transmissive component 41 exits. First exit surface 41b faces second light-transmissive component 42.
Second light-transmissive component 42 has the function of a lens and is provided in one-to-one correspondence with lens tubes 30 so as to cover the front opening. Second light-transmissive component 42 is an approximate cuboid light-transmissive component elongated in the left and right directions and located in front of lens tube 30 (located further in the direction of travel than first light-transmissive component 41). Second light-transmissive component 42 mainly includes second surface of incidence 42a on which light emitted from first exit surface 41b of first light-transmissive component 41 is incident and second exit surface 42b from which light passing through second light-transmissive component 42 exits.
Second surface of incidence 42a is a planar surface that covers the front opening of lens tube 30, and is formed on the rear end surface of second light-transmissive component 42. Second surface of incidence 42a is located in the vicinity of the front opening of lens tube 30.
Second exit surface 42b is the front end surface of second light-transmissive component 42, and is a surface from which light passing through second light-transmissive component 42 exits. Second exit surface 42b is rounded into an approximate sphere.
As illustrated in
Moreover, with such a mounting pedestal 200, light emitted by light source 52 exits light emitter 50 through phosphor 53 and then is incident on first surface of incidence 41a of first light-transmissive component 41. Light incident on first surface of incidence 41a passes through first light-transmissive component 41 and then exits first exit surface 41b of first light-transmissive component 41. Light that has exited from first exit surface 41b is then incident on second surface of incidence 42a of second light-transmissive component 42, passes through second light-transmissive component 42, and then exits from second exit surface 42b.
With headlight 103 including mounting pedestal 200 and wheeled vehicle 100 including mounting pedestal 200, light is emitted in the direction of travel.
Lens tube 30 of mounting pedestal 200 configured this way is, in this embodiment, 87.69 mm long in the anteroposterior direction, 36 mm wide in the left and right directions, and 20 mm tall in the top-to-bottom direction. Moreover, first light-transmissive component 41 according to this embodiment is 49.15 mm long in the anteroposterior direction, 35 mm wide in the left and right directions, and 16 mm tall in the top-to-bottom direction. Further, second light-transmissive component 42 according to this embodiment is 18.611 mm long in the anteroposterior direction, 36 mm wide in the left and right directions, and 20 mm tall in the top-to-bottom direction. Moreover, when second light-transmissive component 42 is provided on lens tube 30, the length in the anteroposterior direction is 99.79 mm.
Next, the low-beam light-emitting device 12 will be discussed with reference to (a) and (b) in
The low-beam light-emitting device 12 has the same configuration as the high-beam light-emitting device 11, but as illustrated in (a) and (b) in
In headlight 103, the low-beam light-emitting device 12 is disposed to the right of the high-beam light-emitting device 11. Similar to the high-beam light-emitting device 11, the low-beam light-emitting device 12 includes, for example, a plurality of lens tubes 330, a plurality of first light-transmissive components 41, a plurality of second light-transmissive components 42, a plurality of light emitters 50, and heat dissipating fins 60.
Mounting pedestal 300 has steps 301. Steps 301 each include major surface 350 facing in the direction of travel of wheeled vehicle 100 in
More specifically, two discrete protrusions 360, each of which has a circular arc front view shape, are structured so as to collectively surround a surrounding region of part of light emitter 80. In this embodiment, the two protrusions 360 are disposed so as to have bilateral symmetry. Cutaways 362 are formed between the two protrusions 360. Protrusion 360 has, on its circumferential surface (side surface relative to light emitter 80) inclined surface 361 inclined such that protrusion 360 gradually narrows in outer diameter from major surface 250 toward a tip end of protrusion 360. In other words, inclined surface 231 has a tapered shape.
Each major surface 350 of mounting pedestal 300 includes first planar surface 351 and second planar surface 352. First planar surface 351 is surrounded by two protrusions 360. First planar surface 351 is flush with second planar surface 352 including cutaways 362. Light source 80 is mounted on first planar surface 351.
As illustrated in
As illustrated in
Next, one example of manufacturing steps for manufacturing mounting pedestal 200 configured as described above will be described with reference to
First, an aluminum component (metal layer 231) equal in shape to mounting pedestal 200 to be used as the foundation for metal layer 231 of mounting pedestal 200 is prepared.
Next, a resin and a complex are prepared, and the resin and the complex, which is a metal alloy of metal, oxygen, and nitrogen, are kneaded into pellets. Then, a resin application processes is performed in which a component corresponding to metal layer 231 is filled in a metal cavity, and the pellets are dispensed so as to cover the component corresponding to metal layer 231. This yields a stacked component of metal layer 231 and insulating layer 232.
Next, a resin removal process is performed to form heat escape port 233 by projecting laser light onto insulating layer 232 to expose a portion of metal layer 231 from the component yielded in the resin application process. Heat escape port 233 is formed in the vicinity of power supply surface 220a of electrical line 220 in the region in which light emitter 50 is arranged. In other words, heat escape port 233 is a hole having a bottom that exposes metal layer 231 from insulating layer 232. Note that heat escape port 233 may be provided in two locations so as to correspond to the two heat dissipating electrodes 75, but one heat escape port 233 may be formed. The same also applies when three or more heat dissipating electrodes 75 are provided. Note that in this embodiment, as one example, heat escape port 233 is formed using laser light, but the method of forming heat escape port 233 is not limited to this example, and may be formed using, for example, a mask. Note that heat escape port 233 may be formed by forming insulating layer 232 using a catalyst.
Next, a laser patterning process is performed in which laser light is projected onto the region in which electrical line 220 is to be formed to form a circuit. In this laser patterning process, the metal core is exposed from the complex included in insulating layer 232.
Next, a base plating process is performed in which an electroless nickel is stacked on the bottom of heat escape port 233 on the component yielded via the resin removal processes. In this way, nickel and copper plated thin film layer 231b stacked on the nickel are formed only on the bottom of heat escape port 233.
Next, a circuit forming processes is performed in which a circuit configured of, stacked in the listed order, the electroless copper plating, electrolytic copper plating, electrolytic nickel plating, and electrolytic gold plating, is formed in the patterned region of the component on which the laser patterning process was performed. Moreover, at the same time as the circuit forming processes performed on the patterned region, a circuit forming process is performed in which a circuit configured of, stacked in the listed order, electrolytic copper plating, electrolytic nickel plating, and electrolytic gold plating, is formed on plated thin film layer 231b formed in the base plating process. This yields mounting pedestal 200. Here, a method using the complex included in insulating layer 232 was described, but the method is not limited to a method of, for example, forming a circuit using a catalyst with plating. For example, a known circuit forming method may be used. For example, the circuit may be formed on insulating layer 232 by mask patterning.
Next, solder 59 is applied to heat escape port 233 and power supply surface 220a of electrical line 220, and light emitter 50 is mounted. Then, by performing a heating process for heating the component yielded in the component mounting step with a forge, light source 52 is mounted on mounting pedestal 200. Note that the manufacturing steps for manufacturing mounting pedestal 300 are the same as above. Here, the base plating process performed in heat escape port 233 is described as forming the base plating only in heat escape port 233, but even if the base plating is formed on the entire metal layer 231 surface, it goes without saying that heat generated by light source 80 can be effectively dissipated.
Note that one example of the manufacturing steps for mounting pedestal 200 was given, but the manufacturing method is not limited to these steps; mounting pedestal 200 may be manufactured using a known method.
Next, the working effects of mounting pedestal 200 according to this embodiment will be described.
As described above, mounting pedestal 200 according to this embodiment is disposed on wheeled vehicle 100, and light emitter 50 is mounted to mounting pedestal 200. Mounting pedestal 200 includes metal layer 231 and insulating layer 232 stacked on metal layer 231. Moreover, insulating layer 232 has major surface 250 facing in the direction of travel of wheeled vehicle 100 and heat escape port 233 in which solder 58 that joins light emitter 50 and metal layer 231 is disposed. Mounting pedestal 200 has a plurality of steps 201 which arrange major surface 250 into a plurality of major surfaces 250.
When light source 52 including an n electrode bump and a p electrode bump is mounted on a typical pedestal using a conventional method, heat dissipates from the n and p electrode bumps, but since insulating layer 232 is formed between (i) the n and p electrode bumps and (ii) metal layer 231, heat does not easily dissipate from light source 52. However, with the present configuration, heat escape port 233 in which solder 59 for joining metal pedestal 70 and metal layer 231 is disposed is formed in insulating layer 232. As such, heat generated by light source 52 is transferred to and dissipated by light source 52, Au bumps 91 and 92, metal pedestal 70, solder 59, plated thin film layer 231b, and metal layer 231.
Moreover, with a conventional pedestal, when a high output light source 52 is used, in order to dissipate the heat generated by light source 52, restrictions regarding fastening the pedestal using screws, for example, arise, thereby limiting the freedom of arrangement of pedestals, but with mounting pedestal 200, compared to conventional pedestals, since the heat dissipation ability is high, restrictions regarding fastening using screws, for example, are less likely to occur. Accordingly, compared to conventional pedestals, mounting pedestals 200 can be more freely arranged, making it possible to produce designs in shapes suitable for the moving body.
Therefore, with mounting pedestal 200, there is a greater degree of freedom with regard to design of the moving body and heat generated by light source 52 can be efficiently dissipated.
In particular, pedestals having a low heat dissipating ability are difficult to use with high output light sources 52, but since mounting pedestal 200 has a higher heat dissipating ability than, for example, a conventional flexible substrate, mounting pedestal 200 can be used in a high output headlight 103.
Moreover, with mounting pedestal 200, even if the weight is reduced to ⅕th of that of a conventional flexible substrate, equivalent heat dissipating efficacy can be achieved. Accordingly, when mounting pedestal 200 is applied to, for example, a moving body, the weight of the moving body can also be reduced.
Further, with mounting pedestal 200, unlike a conventional flexible substrate, since there is no need to perform, for example, an adhesive application process after mounting the light sources to the flexible substrate and performing a reflow process, the number of steps in the manufacturing process can be reduced. Accordingly, when mounting pedestal 200 is applied to, for example, a moving body, the manufacturing cost of the moving body can be reduced.
Moreover, with mounting pedestal 200, plated thin film layer 231b of heat escape port 233 is formed and stacked plating configured of, stacked in the listed order, electroless copper plating, electrolytic nickel plating, electrolytic gold plating, is formed in the region patterned in the laser patterning process. Accordingly, compared to a pedestal in which nickel plating is formed between metal layer 231 and insulating layer 232, manufacturing costs can be decreased.
Moreover, headlight 103 according to this embodiment includes a plurality of mounting pedestals 200. Moreover, the moving body according to this embodiment includes mounting pedestal 200.
The same working effects are achieved with these configurations as well.
Moreover, mounting pedestal 200 according to this embodiment further includes electrical line 220 disposed on a side of light emitter 50 opposite a light emitting side of light emitter 50 and having power supply surface 220a that supplies power to light source 52 of light emitter 50. Power supply surface 220a is offset from heat escape port 233 in an approximately vertical direction.
With this configuration, since power supply surface 220a is disposed below heat escape port 233, even if the positioning of light emitter 50 were to shift in the left and right directions due the counterbore of heat escape port 233, compared to if light emitter 50 were to shift up or down, there is more allowance in shifts in the optical axis of light emitter 50.
Moreover, in mounting pedestal 200 according to this embodiment, in a front view of major surfaces 250, in order in the direction of travel, each major surface 250 is closer to being parallel to a plane approximately perpendicular to the direction of travel than the preceding major surface 250.
With this configuration, upon mounting light emitter 50 to mounting pedestal 200, light emitter 50 is arranged such that its optical axis spreads about the direction of travel in the left and right directions. As such, when mounting pedestal 200 is used, headlight 103 can easily produce a wide distribution of light.
Moreover, mounting pedestal 200 (300) according to this embodiment further includes depression 260 (or protrusion 360) formed in a surrounding region of light emitter 50 (80). Major surface 250 (350) includes first planar surface 251 (351) on which light emitter 50 (80) is mounted and that is partially surrounded by depression 260 (or protrusion 360), and second planar surface 252 (352) in areas other than first planar surface 251 (351). First planar surface 251 (351) and second planar surface 252 (352) are flush. Electrical line 220 is formed on first planar surface 251 (351) and second planar surface 252 (352).
With this configuration, since first planar surface 251 and second planar surface 252 are flush, when forming electrical line 220 extending from second planar surface 252 to first planar surface 251, electrical line 220 can be formed on first planar surface 251 via bridge 262 on which second planar surface 252 is formed, and not via depression 260. With this configuration, the line is less likely to break compared to when electrical line 220 is formed in depression 260.
Moreover, with this configuration, since first planar surface 351 and second planar surface 352 are flush, when forming electrical line 220 extending from second planar surface 352 to first planar surface 351, electrical line 220 can be formed on first planar surface 351 via in cutaways 362 on which second planar surface 352 is formed, and not via protrusion 360. With this configuration, the line is less likely to break compared to when electrical line 220 is formed on protrusion 360.
Moreover, in mounting pedestal 200 used in the high-beam light-emitting device 11 according to this embodiment, depression 260 engages with lens tube 30 and has inclined surface 261 inclined such that depression 260 gradually narrows from the opening of depression 261 toward the bottom of depression 260.
With this configuration, when fixing lens tube 30 including first light-transmissive component 41 and second light-transmissive component 42 to mounting pedestal 200, positioning is easier to do. Accordingly, lens tube 30 can be precisely fixed to mounting pedestal 200, making the optical axis of light emitter 50 that passes through first light-transmissive component 41 and second light-transmissive component 42 less likely to deviate from the desired direction.
Moreover, in mounting pedestal 300 used in the low-beam light-emitting device 12 according to this embodiment, protrusion 360 has inclined surface 361 inclined such that protrusion 360 gradually narrows in outer diameter from major surface 350 toward a tip end of protrusion 360.
With this configuration, when fixing lens tube 330 including first light-transmissive component 41 and second light-transmissive component 42 to mounting pedestal 300, positioning is easier to do. Accordingly, lens tube 330 can be precisely fixed to mounting pedestal 300, making the optical axis of light emitter 80 that passes through first light-transmissive component 41 and second light-transmissive component 42 less likely to deviate from the desired direction.
Moreover, in mounting pedestal 200 according to this embodiment, in a front view of major surfaces 250, in order in the direction of travel, each light emitter 50 optical axis is closer to being parallel to the direction of travel than the optical axis of the preceding light emitter 50.
With this configuration, light emitting from headlight 103 of wheeled vehicle 100 can have a wide distribution in the left and right directions about the direction of travel.
Moreover, mounting pedestal 200 according to this embodiment further includes ribs 202 disposed on the rear surface of mounting pedestal 200, in positions corresponding to steps 201, the rear surface and steps 201 being on opposite sides of mounting pedestal 200.
With this configuration, since ribs 202 are formed in the corners of the steps on the rear surface of mounting pedestal 200, the strength of mounting pedestal 200 can be secured.
Moreover, mounting pedestal 200 according to this embodiment further includes heat dissipating fins 60 disposed on the rear surface of mounting pedestal 200 and extending approximately vertically, the rear surface and steps 201 being on opposite sides of mounting pedestal 200.
With this configuration, since heat dissipating fins 60 extend in a direction approximately perpendicular to the alignment direction, natural convection current can easily pass in an upward direction from the rear surface of mounting pedestal 200. Accordingly convection of heat on the rear surface of mounting pedestal 200 does not easily occur. As a result, compared to heat dissipating fins 60 that extend in a direction approximately parallel to the alignment direction, heat dissipating fins 60 can easily dissipate heat on the rear surface of mounting pedestal 200.
Moreover, mounting pedestal 200 according to this embodiment is elongated and curves in the alignment direction of major surfaces 250.
With this configuration, mounting pedestal 200 can be suited to a variety of moving bodies. Accordingly, design freedom can be increased when mounting pedestal 200 is used.
Moreover, mounting pedestal 200 according to this embodiment further includes connector 270 connectable to an adjacent mounting pedestal 200.
With this configuration, by connecting a plurality of mounting pedestals 200 together, mounting pedestals 200 can be arranged in three dimensions in accordance with the structure of the moving body. Accordingly, design freedom can be further increased when mounting pedestal 200 is used.
Moreover, in mounting pedestal 200 according to this embodiment, connector 270 is disposed at an end region of mounting pedestal 200.
With this configuration, adjacent mounting pedestals 200 are easily connectable.
Light-emitting device 11 (12) according to this embodiment includes: mounting pedestal 200; light emitter 50 that emits light; lens tube 30 that reflects light; and first light-transmissive component 41 that is disposed in lens tube 30 and guides, in approximately the direction of travel, the light emitted by light emitter 50.
With this configuration, light is guided in approximately the direction of travel by first light-transmissive component 41 and lens tube 30. As such, light with a high degree of directionality relative to the direction of travel of wheeled vehicle 100 can be emitted from headlight 103.
Moreover, light-emitting device 11 (12) according to this embodiment further includes second light-transmissive component 42 that focuses light and is disposed on lens tube 30, in a location further in the direction of travel than first light-transmissive component 41.
With this configuration, for example, since light emitted from first exit surface 41b of first light-transmissive component 41 is focused and emitted from second exit surface 42b of second light-transmissive component 42, light with an even higher degree of directionality relative to the direction of travel of wheeled vehicle 100 can be emitted from headlight 103.
Note that since the low-beam light-emitting device 12 and mounting pedestal 300 used in light-emitting device 12 also achieve the same working effects, specific description thereof is omitted unless particularly pointed out.
Moreover, mounting pedestal 200, 300 according to this embodiment on which light emitters 50 may be mounted, includes metal layer 231 and insulating layer 232 stacked on metal layer 231. Metal layer 231 and insulating layer 232 are arranged in a stepped structure which includes a plurality of steps 201 each having major surface 250. Major surface 250 of each of the plurality of steps 201 is configured to receive and provide power to a corresponding light emitter 50, and insulating layer 232 on each of the plurality of steps 201 includes heat escape port 233 in which solder 58 that joins light emitter 50 and metal layer 231 can be disposed.
Moreover, a headlight according to this embodiment includes: housing 110 configured to be mounted to a front of a vehicle 100; a mounting pedestal located within housing 110 on which a plurality of light emitters 50 are mounted. The Mounting pedestal includes metal layer 231 and insulating layer 232 stacked on metal layer 231. Metal layer 231 and insulating layer 232 are arranged in a stepped structure which includes a plurality of steps 201 each having major surface 250. Major surface 250 of each of the plurality of steps 201 includes a corresponding light emitter 50 from among the plurality of light emitters 50 mounted thereto, and is configured to provide power to the corresponding light emitter 50. Insulating layer 232 on each of the plurality of steps 201 includes heat escape port 233 in which solder 58 that joins light emitter 50 and metal layer 231 is disposed.
Hereinbefore, the present disclosure has been described based on an embodiment, but the present disclosure is not limited to the embodiment.
For example, in the above embodiment, each major surface may be randomly arranged on the mounting pedestal so as to be approximately parallel to or intersecting a plane approximately perpendicular to the direction of travel. Moreover, each side surface may be arranged on the mounting pedestal so as to be randomly either approximately parallel to a vertical direction or intersecting a vertical direction.
Moreover, in the above embodiment, (b) in
As illustrated in (b) in
In
Depressions 260 included in mounting pedestal 200 according to an embodiment are depressions having bottoms, but may be realized as through-holes 560 (one example of the depression) illustrated in (a) and (b) in
In such cases, engagement protrusions 531 of each lens tube 530 are formed so as to correspond to through-holes 560. Each engagement protrusion 531 is a protrusion having a columnar shape that corresponds to the shape of through-hole 560. In other words, each engagement protrusion 531 may be a shape that corresponds to the shape of through-hole 560, such as circular, elliptical, rectangular, etc. in a front view. Moreover, among a pair of through-holes 560, one through-hole 560 may be circular in shape and the other through-hole 560 may be elliptical in shape, and engagement protrusions 531 of lens tube 530 may be circular in shape. In such cases, lens tube 530 can be easily positioned relative to mounting pedestal 500, and through-holes 560 and engagement protrusions 531 are easy to manufacture, thereby inhibiting sudden increases in manufacturing costs.
Moreover, in the above embodiment, the power supply surface may be disposed horizontally offset from the heat escape port. In other words, the power supply surface may be disposed to the left or right of the heat escape port.
While the foregoing has described one or more embodiments and/or other examples, it is understood that various modifications may be made therein and that the subject matter disclosed herein may be implemented in various forms and examples, and that they may be applied in numerous applications, only some of which have been described herein. It is intended by the following claims to claim any and all modifications and variations that fall within the true scope of the present teachings.
Number | Date | Country | Kind |
---|---|---|---|
2016-178940 | Sep 2016 | JP | national |