The invention relates to a mounting structure for holding a plurality of print head units.
A printer, e.g. an ink jet printer, frequently comprises a plurality of print head units each of which has a plurality of printing elements (nozzles) the positions of which must be carefully adjusted relative to one another in order to assure a high print quality.
EP 1 676 711 B1 discloses a mounting structure of the type indicated above, wherein the individual print head units are rigidly held in the mounting sites of a common support, and a flexure-based adjusting system is arranged for adjusting the entire support structure with the print head units held therein relative to the frame.
In other known printers, a dense configuration of a large number of print heads is provided. For example, a staggered array of print heads may be provided over the width of a recording medium, forming a page-wide array. Then, using four colours (e.g. CMYK), the number of print heads may become large. Replacing or servicing one of such print heads is difficult and a lot of effort is needed and a lot of time is consumed merely for demounting and mounting.
It is an object of the invention to provide a mounting structure that permits easier demounting and mounting.
The object is achieved in a mounting structure according to claim 1.
The mounting structure according to the invention further permits to adjust the print head units not only relative to the rigid support but also relative to one another. Consequently, it is possible to correct manufacturing tolerances of the individual print head units as well as manufacturing tolerances of the common support. This has the further advantage that the manufacture of the print head units and the support may be cheaper because larger tolerances can be allowed.
The invention facilitates a replacement of an individual print head unit in a printer, because, when the new print head unit has been inserted, this individual print head unit can be adjusted relative to all the other units. In order to replace or service a print head, the rigid support and any print head mounted thereon can be easily demounted and taken away from the printer. Then, the print head may be replaced by another print head and, if appropriate, be positioned relative to the other print heads mounted on the rigid support. Then, the rigid support including the mounted print heads can be mounted on the printer again. Of course, it is also possible to just mount the other print head, then mount the rigid support on the printer and only then position the other print head relative to the other print heads.
Useful optional features of the invention are indicated in the dependent claims.
In an embodiment, the mounting structure according to the present invention, the frame and the rigid support are provided with mating positioning and mounting elements for detachably mounting the rigid support on the frame. The positioning and mounting elements ensure a proper mounting and an accurate positioning of the rigid support relative to the frame and thus of the print head units relative to the frame. As a result, the rigid support and print head units may be demounted and mounted again and achieving a same accurate positioning of the print head units in the printer.
In a particular embodiment, the mating positioning and mounting elements comprise at least one spherical positioning bulge and respective recess for receiving said bulge. It is known that spherical elements to be positioned in a recess allow suitable and accurate positioning without an over-constrained mechanical coupling.
In a more particular embodiment, the three recesses comprise a support patch and a V-shaped positioning groove. Using such a support patch and V-shaped groove, thermal expansion is enabled.
In an embodiment, the adjustment mechanisms in the individual mounting sites comprise flexure plates each of which is adapted to hold a mounting portion of the associated print head rigidly in a first direction but is flexible in at least one of the two other directions that are orthogonal to said first direction.
The print head units may each have a large number of printing elements or nozzles that form an elongated array that extends in a given direction, and the nozzle arrays of the individual print head units may be aligned in that direction. Then, the mounting sites are preferably disposed such that the individual print head units are separated from one another by gaps which enable independent adjustment movements of the individual units. The mounting sites of the rigid support may be disposed in two rows and staggered such that the print head units held in the mounting sites of one row fill the gaps between the print head units held in the mounting sites of the other row.
In an embodiment, each mounting site has at least two independent adjusting mechanisms, one for a linear adjustment of the print head unit in the direction of the row of print head units, and one for a yaw adjustment of the print head unit about an axis that is normal to a plane defined by the arrays of printing elements.
The two adjustment mechanisms and additional holders for holding the print head unit in the mounting site may be configured such that they define a fixed position of the print head unit relative to the support in all four remaining degrees of freedom.
It may be preferable that the adjustment mechanisms and holders of each mounting site are clamped to the common support. Then, when the mounting structure is assembled, a jig may be used for aligning the sub-assemblies comprising the adjustment mechanisms and the holders for the print head units relative to one another, and then the adjustment mechanisms and holders may be clamped to the support while being held in the jig, thereby to define the positions of the adjustment mechanisms and holders relative to the support while retaining the spatial relationships between the individual units.
In an embodiment, each mounting site comprises a carrier that is adjustable by means of the adjustment mechanisms and has reference surfaces that define the position of the print head unit relative to the carrier. Mechanical clamps may be used for detachably clamping each print head unit into the associated carrier.
An embodiment example will now be described in conjunction with the drawings, wherein:
As is shown in
The support 14 is basically formed by a rigid plate that is oriented vertically (in the Y-Z-plane normal to the X-Y-plane of the frame 12). Mounting sockets 18 are formed on both ends of the support 14, so that the support can be fixed on the frame 12 with preloaded fastening screws (not shown) which will however permit a certain play in the X-Y-plane of the frame 12. A flat support patch 20 and a V-shaped positioning groove 22 that extends in X-direction are formed in the top surface of the frame 12 at one end thereof. A conical positioning pit 24 is formed in the top surface of the frame 12 at the other end thereof. The mounting sockets 18 of the support 14 form three spherical positioning bulges 26 (only two of which are visible) for engagement on the support patch 20 and into the positioning pit 24 and the positioning groove 22. In this way, as is known per-se, the support 14 is held in a well-defined but not overconstrained position relative to the frame 12, and thermal expansion of the support can be allowed for.
In this example, the support 14 has four mounting sites 28 for the print head units 10 on the side that is visible in
As will be explained in greater detail below, each mounting site 28 comprises two adjusting mechanisms 30, 32 and a holder 34 for the print head unit 10. The support 14 has two rows of tabs 36 that have been cut out of the plate-like main part of the support and have been bent at right angles so as to project to the front side in
Each of the brackets 38 serves to attach a holder 34 of one mounting site 28 and the adjusting mechanism 30 of an adjacent mounting site to the support 14. To that end, the adjusting mechanism 30 engages the tabs 36 from one side, and the holder 34 engages the same tabs from the other side, and all these members are clamped together by means of clamping screws (not shown) that pass through the U-shaped ends of the bracket 38.
A single (empty) mounting site 28 has been shown in
A rigid carrier 40 for the print head unit 10 has a left end attached to the adjusting mechanism 30 and a right end attached to both the adjusting mechanism 32 and the holder 34. The adjusting mechanism 30 permits a yaw adjustment of the carrier 40 about the Z axis by moving the left end of the carrier 40 in Y-direction while the right end is fixed in Y-direction by the holder 34 which, together with the adjusting mechanism 32, a fictional pivot point. The adjusting mechanism 32 permits an adjustment of the X-position of the carrier 34 by moving the carrier 40 in a linear translational movement along the X-axis. The adjusting mechanism 30 and the holder 34 are each attached to the carrier 40 by means of at least two bolts so as to prevent a rotation of the carrier 40 about the X-axis and hold both ends of the carrier 40 in fixed positions in Z-direction, thereby preventing also a rotation about the Y-axis.
More precisely, the adjusting mechanism 30 comprises two parallel plates 42 and 44 that are made of sheet metal. The two plates have respective top parts that are attached to one another face to face and are held at the support 14 by the clamp 38 (
Similarly, the holder 34 is formed by two plates 50, 52 that are disposed face to face and held by another one of the clamps 38 (
Further, the plates 42, 44, 50 and 52 are free to bend in order to follow the translational movement of the carrier 40 in X-direction as controlled by the adjusting mechanism 32.
The adjusting mechanism 32 has been shown in greater detail in
The adjusting mechanism 32 is basically constituted by a plate member 58 of punched or laser cut sheet metal, and a screw-and-spring-type linear-adjustor 60 of a known construction. The plate member 58 comprises a base 62 that is attached to the support 14 (
As is shown in
The function principle of the other adjusting mechanism 30 will now be explained in conjunction with
The plate 44 forms a lever 76 that is arranged between the top part 78 and the bottom part 80 of this plate and is connected to the top part 78 via two non-parallel hinged links 82 and to the bottom part 80 via a horizontal hinged link 84. The adjustor 74 connects the top end of the top part 78 to the free end of the lever 76.
As is shown in
By reference to
When the print head unit 10 is to be mounted in the bracket-like carrier 40 which is itself held by the adjusting mechanisms 30, 32 and the holder 34, the print head unit 10 is set against the carrier 40 such that its reference surfaces 90y engage the Y-reference surfaces 94 and the reference surface 90x (which is not visible on the right side in
Then, two clamps 102 are used for clamping the reference plates 90 firmly against the Y-reference surfaces 94, as shown in
The clamp 102 has a base 104 that is attached to the bottom side of the carrier 40 with bolts 106. Further, the clamp 102 has a lever 108 the central portion of which is connected to the base 104 by a flexible hinge 110, and a pressing member 112 connected to one arm of the lever 108 by another flexible hinge 114. A clamping screw 116 is in thread-engagement with a threaded bore of the other arm of the lever 108 and presses against a side face of the base 104. When the clamping screw 116 is tightened, the lever 108 tilts about the flexible hinge 110, and the pressing member 112 is pressed against the reference plate 90 while the hinge 114 permits the pressing member to remain parallel with the reference plate. In this way, the print head unit 10 can be firmly secured at the carrier 40 in a precisely defined position.
When the mounting structure that has been described above is to be assembled, the sub-assemblies constituted by the carriers 40, the adjustment mechanisms 30, 32 and the holders 34 of all the mounting sites 28 are mounted in a common jig. The jig may be a member that comprises dummies of the precisely aligned print head units 10 and may for example be attached to the carriers 40 in the various sub-assemblies by means of the clamps 102 in the same way as has been described for the print head units 10 themselves. Then, the bases 62 of the adjusting mechanisms 32 will be clamped directly to the support 14, and the adjustment mechanisms 30 and the holders 34 are attached to the tabs 36 by means of the clamps 38. Then, when the jig is removed, the sub-assemblies for all the mounting sites 28 will be held at the support 14 in aligned positions in all six degrees of freedom with an accuracy, that is sufficient for at least four of these degrees of freedom, i.e. the Z-positions of both end of the carriers, the Y-positions of the respective right ends of the carriers, rotations about the X-axis and rotations about the Y-axis. The two remaining degrees of freedom (Y-position of the left ends and X-position of all carriers) are pre-set with the same accuracy but may be adjusted even more precisely by means of the adjusting mechanisms 30, 32 individually for each print head unit.
Once the individual print head units 10 have been inserted and fastened by means of the clamps 102, a fine adjustment may for example be performed as follows.
A test print is made by firing the nozzles of all print head units 10 on both sides of the support 14, with the timings of the print head units on the front side and the back side of the support being synchronized with the movement of the recording medium such that continuous straight pixel lines are printed onto the recording medium. Then, the positions of the printed dots are measured in order to determine the correction parameters for the fine adjustment.
For example, when it is found that the distance between a dot at one end of a row that has been printed with a nozzle array 88 a first print head unit 10 and the adjacent dot printed with the nozzle array 88 of the neighbouring print head unit 10 (on the other side of the support) deviates from a nominal distance, then the X-position of the neighbouring print head unit 10 may be corrected by means of the adjusting mechanism 30. In order to correct the X-positions of all print head units 10, the first unit on the front side of the support, at one end of the two rows (see rows of cut-outs 16 in
Further, when it is found that the nozzle arrays 88 deviate from their target positions in Y-direction, one may first attempt to minimize these deviations by correcting the timings at which the nozzles of the different print head units are fired. However, when the nozzle arrays 88 are not exactly parallel, the deviations cannot be eliminated completely simply by correcting the timings. In this case, it will however be possible to use the adjusting mechanisms 30 for a yaw adjustment of the print head units until the Y-positions of the last dot printed with one print head unit 10 and the first dot printed with the next print head unit coincide, so that a smooth row of dots is obtained.
Similar fine adjustments may be made when one of the print head units 10 has been replaced by new one and it turns out that a misalignment has occurred due to manufacturing tolerances of the new print head unit.
Number | Date | Country | Kind |
---|---|---|---|
14165555.5 | Apr 2014 | EP | regional |
Number | Date | Country | |
---|---|---|---|
61970558 | Mar 2014 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/EP2015/055883 | Mar 2015 | US |
Child | 15262666 | US |