The present disclosure relates to a mounting structure for an electric vehicle, and an electric vehicle including a mounting structure.
The statements in this section merely provide background information related to the present disclosure and may not constitute prior art.
The desire to reduce automotive fuel consumption and emissions has been well documented. Thus, electric vehicles have been developed to significantly reduce reliance on internal combustion engines. In general, electric vehicles differ from conventional motor vehicles because they are driven by one or more rechargeable battery packs having lithium-ion batteries, for example, or any other suitable electrical power storage units. The battery pack typically powers one or more motors to drive a set of wheels. The size and weight of the battery pack is typically greater for electric vehicles capable of traveling long distances (e.g., electric vehicles capable of traveling more than 500 miles). Depending on the mounting location relative to the electric vehicle, the battery pack may be susceptible to various vehicle loads.
Integration of rechargeable battery packs into the structure of existing vehicles and providing efficient load paths in a variety of operating conditions can be challenging, primarily due to the increased weight of the battery packs and their larger footprint in the vehicle. The present disclosure addresses these and other issues related to the integration of rechargeable battery packs in electric vehicles.
This section provides a general summary of the disclosure and is not a comprehensive disclosure of its full scope or all of its features.
In one form, the present disclosure provides a mounting structure for mounting a battery tray to a frame of a vehicle. The mounting structure includes a shear plate and a plurality of discrete mounting blocks. The shear plate extends in a longitudinal direction of the vehicle. The plurality of discrete mounting blocks are mounted onto the shear plate between the shear plate and a bottom cover of the battery tray. Each mounting block of the plurality of discrete mounting blocks includes a plurality of walls that define one or more cavities. The discrete mounting blocks includes a set of first mounting blocks located proximate a first side of the shear plate and a set of second mounting blocks located proximate a second side of the shear plate that is opposite the first side of the shear plate.
In variations of the mounting structure of the above paragraph, which can be implemented individually or in any combination: the first mounting blocks are aligned with each other in the longitudinal direction of the vehicle and the second mounting blocks are aligned with each other in the longitudinal direction of the vehicle; the first side corresponds to a left side of the vehicle and the second side corresponds to a right side of the vehicle, each first mounting block is laterally aligned with a respective second mounting block that is located on an opposite side of a longitudinal axis of the vehicle; the mounting structure includes a plurality of tray fasteners, each fastener extending through the shear plate and a respective discrete mounting block of the plurality of discrete mounting blocks and configured to extend through the bottom cover of the battery tray to secure the shear plate, the respective discrete mounting block, and the battery tray to each other; a plurality of frame fasteners, each frame fastener extending through the shear plate and a corresponding discrete mounting block of the plurality of discrete mounting blocks and configured to extend through a longitudinal rail of a vehicle frame to secure the shear plate, the respective discrete mounting block, and the vehicle frame to each other; the plurality of walls comprise transverse walls that are transverse to the shear plate, the transverse walls have different thicknesses; the plurality of walls of each mounting block comprise a lower horizontal wall, an upper horizontal wall, and at least three transverse walls, each transverse wall spanning between the upper and lower horizontal walls and having an outboard edge facing outboard relative to the vehicle; each transverse wall is substantially perpendicular to the lower and upper horizontal walls; a foam material is disposed within one or more cavities; and the discrete mounting blocks are angled in a rearward direction relative to a horizontal axis extending in a transverse direction of the vehicle.
In another form, the present disclosure provides a mounting structure for mounting a battery tray to a frame of a vehicle. The mounting structure includes a shear plate, a plurality of discrete mounting blocks, and tray fasteners. The shear plate extends in a longitudinal direction of the vehicle. The plurality of discrete mounting blocks are mounted onto the shear plate between the shear plate and a bottom cover of the battery tray. Each mounting block of the plurality of discrete mounting blocks includes a plurality of walls that define one or more cavities. Each tray fastener extends through the shear plate and a respective discrete mounting block of the plurality of discrete mounting blocks and is configured to extend through the battery tray to secure the shear plate, the respective discrete mounting block, and the battery tray to each other. The discrete mounting blocks includes a set of left mounting blocks located on a left side side of the shear plate and a set of right mounting blocks located on a right side of the shear plate. Each left mounting block is laterally aligned with a respective right mounting block.
In yet another form, the present disclosure provides a vehicle that includes a vehicle frame, a battery tray and a mounting structure. The vehicle frame comprises a pair of spaced apart frame rails extending lengthwise in a longitudinal direction of the vehicle. The mounting structure is secured to the vehicle frame and the battery tray and comprises a shear plate and a plurality of discrete mounting blocks. The shear plate extends in the longitudinal direction of the vehicle. The plurality of discrete mounting blocks are mounted onto the shear plate between the shear plate and the battery tray. Each mounting block of the plurality of discrete mounting blocks comprises a plurality of walls that define one or more cavities. The plurality of discrete mounting blocks comprises a set of left mounting blocks located proximate a left side of the shear plate and a set of right mounting blocks located proximate a right side of the shear plate.
Further areas of applicability will become apparent from the description provided herein. It should be understood that the description and specific examples are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
In order that the disclosure may be well understood, there will now be described various forms thereof, given by way of example, reference being made to the accompanying drawings, in which:
The drawings described herein are for illustration purposes only and are not intended to limit the scope of the present disclosure in any way.
The following description is merely exemplary in nature and is not intended to limit the present disclosure, application, or uses. It should be understood that throughout the drawings, corresponding reference numerals indicate like or corresponding parts and features.
With reference to
The battery housing assembly 12 includes one or more battery arrays (not shown) and a battery tray or housing 28. The battery housing 28 is an enclosure which provides a structural surrounding and sealed compartment for the battery arrays and other battery components such as cooling lines, support brackets, and wiring disposed therein. The battery arrays may be rechargeable and may include lithium-ion batteries or any other suitable electrical power storage units. In some forms, the battery arrays are stacked on top of each other.
The battery housing 28 may be disposed at various locations of the vehicle 10 and is mounted to the vehicle frame 14. In this way, the battery housing 28 is supported by the vehicle frame 14 and is remote from a passenger cabin (not shown) and cargo compartments (not shown) of the vehicle 10, therefore, not occupying space that would otherwise be available for passengers or cargo. The battery housing 28 includes a lid 38, a body 40, and internal cross members 42 (only one schematically illustrated in dashed lines in
The body 40 includes a bottom wall or panel 48 (
The vehicle frame 14 is the main supporting structure of the vehicle 10, to which various components are attached either directly or indirectly. The vehicle frame 14 includes opposed longitudinal rails 54a, 54b. The rails 54a, 54b are spaced apart from each other and may establish a length of the vehicle frame 14.
With reference to
In the example illustrated, the shear plate 56 is a rectangular stamping with a flat, thin profile and is spaced apart from the bottom wall 48 of the battery housing 28. The shear plate 56 extends along a longitudinal direction of the vehicle 10 and covers the bottom wall 48 and extends outboard of the battery housing assembly 12. Stated differently, the shear plate 56 has a surface area that is greater than a surface area of the bottom wall 48 of the battery housing 28. The shear plate 56 is secured to the bottom wall 48 and the longitudinal rails 54a, 54b of the vehicle frame 14 by the mounting blocks 58a, 58b. The shear plate 56 is made of a metal material and includes opposing sides that may have one or more cutouts 62 formed therein. In this way, handling and assembling the shear plate 56 to the battery housing 28 and the vehicle frame 14 is facilitated. In the example illustrated, the cutouts 62 have a generally rectangular shape. In other forms, the cutouts 62 include other suitable shapes such as square or semi-circular, for example.
The plurality of mounting blocks 58a, 58b may be manufactured from a hot roll process, for example, and are made of a metal material such as steel or high strength steel, for example. The plurality of mounting blocks 58a, 58b are mounted onto the shear plate 56 at respective sides of the shear plate 56 and are positioned between the shear plate 56 and the bottom wall 48 of the battery housing 28. The mounting blocks 58a, 58b are unattached from each other and are not integrally formed with each other. Stated differently, the mounting blocks 58a, 58b are separate and discrete components located at respective sides of the shear plate 56 (i.e., the mounting blocks 58a, 58b do not extend in a transverse direction along a substantial width of the shear plate 56 and, unlike conventional cross bars, the mounting blocks 58a or 58b on one side do not extend in the transverse direction across the central longitudinal axis of the vehicle to the other side).
Brackets 64 are secured to a respective sidewall 50 of the battery housing 28 and are spaced apart along a longitudinal direction of the vehicle 10. The brackets 64 have a generally L-shape and include a vertical extending portion 64a and a horizontal extending portion 64b. The vertical extending portion 64a is secured to the respective sidewall 50 of the battery housing 28 and the horizontal extending portion 64b is secured to the top of a respective mounting block 58a, 58b such that the mounting block 58a, 58b is between the horizontal extending portion 64b and the shear plate 56, with the shear plate 56 being between the mounting block 58a, 58b and a respective longitudinal rail 54a, 54b. In the example illustrated, the vertical extending portion 64a is welded to the respective side wall 50 of the battery housing 28. In some forms, the vertical extending portion 64a is attached to the respective side wall 50 of the battery housing 28 by mechanical fasteners, for example.
In the example illustrated, each mounting block 58a, 58b is welded to the shear plate 56 and is vertically aligned with a respective internal cross member 42 of the battery housing 28. Each mounting block 58a, 58b is also secured to a respective longitudinal rail 54a, 54b and the battery housing 28 via fasteners 70a, 70b. That is, the fastener 70a extends through an aperture 65a in the shear plate 56, an aperture 60 in a respective mounting block 58a, 58b, the bottom wall 48 of the battery housing 28 and a respective internal cross member 42, thereby securing the shear plate 56, the respective mounting block 58a, 58b and the battery housing 28 to each other. Similarly, the fastener extends through an aperture 65b in the shear plate 56, an aperture 63 in the respective mounting block 58a, 58b, the horizontal extending portion 64b of a respective bracket 64 and a respective longitudinal rail 54a, 54b, thereby securing the shear plate 56, the respective mounting block 58a, 58b, the respective bracket 64 and the respective longitudinal rail 54a, 54b to each other outboard of the battery housing assembly 12. In some forms, each mounting block 58a, 58b is welded to a bottom surface of the bottom wall 48 of the battery housing 28 and is secured to the respective longitudinal rail 54a, 54b and the shear plate 56 via the fasteners 70b as described above.
The mounting blocks 58a are located on a first side 72 of the shear plate 56 and the mounting blocks 58b are located on an opposing second side 74 of the shear plate 56. The mounting blocks 58a are aligned with each other along the longitudinal direction of the vehicle 10 and the mounting blocks 58b are aligned with each other along the longitudinal direction of the vehicle 10. Each mounting block 58a is also laterally or horizontally aligned with a respective mounting block 58b located on the second side 74. In the example illustrated, the mounting blocks 58a, 58b have a parallelogram shape and are angled in a rearward direction with respect to a horizontal axis X (
As best shown in
In the example illustrated, an optional foam material is provided within one or more cavities 78 to provide additional stiffness of the mounting blocks 58a, 58b during vehicle operation. In some forms, the mounting blocks 58a, 58b include one or more oblique walls, in addition to, or instead of, the vertical walls 82a, 82b, 82c, 82d.
Although the figures show the mounting blocks 58a, 58b with four (4) vertical walls and two (2) horizontal walls, in some forms, the mounting blocks 58a, 58b may have more or less verticals walls and horizontal walls. As shown in
The walls 80 of the mounting blocks 58a, 58b of the present disclosure are oriented such that the impact forces strike edge-wise on the walls 80 so that the walls 80 transfer the load from the vehicle impact in compression along the walls 80 longest axis. As shown in
Unless otherwise expressly indicated herein, all numerical values indicating mechanical/thermal properties, compositional percentages, dimensions and/or tolerances, or other characteristics are to be understood as modified by the word “about” or “approximately” in describing the scope of the present disclosure. This modification is desired for various reasons including industrial practice, material, manufacturing, and assembly tolerances, and testing capability.
As used herein, the phrase at least one of A, B, and C should be construed to mean a logical (A OR B OR C), using a non-exclusive logical OR, and should not be construed to mean “at least one of A, at least one of B, and at least one of C.”
The description of the disclosure is merely exemplary in nature and, thus, variations that do not depart from the substance of the disclosure are intended to be within the scope of the disclosure. Such variations are not to be regarded as a departure from the spirit and scope of the disclosure.