1. Field of the Invention
The invention relates to a mounting structure for a shielding shell.
2. Description of the Related Art
Japanese Unexamined Patent Publication No. 2006-196198 discloses a connector device with a shield for shielding high-frequency noise. This connector device has a connector and a shielding shell assembly. The connector is to be attached to a case that has a motor inside. The shielding shell assembly is made of metal and covers the connector. The shielding shell is composed of first and second shielding shells that are connected to each other. Both shielding shells are made of a metal plate using a metal flat plate material as a base material.
The first shielding shell is shield-connected to the case of the device and covers a rear part of the connector in a connecting direction with a mating connector. The second shielding shell covers a front part of a housing. Two contact pieces in the form of leaf springs are provided on a rear end portion of the second shielding shell and come into contact with the first shielding shell so that the second shielding shell is shield-connected to the case of the device via the first shielding shell.
The first and second shielding shells of the above-described connector device are in contact at only two points. Thus, shielding performance of the second shielding shell may be insufficient. As a countermeasure, it may be thought to prepare a separate metal plate made of aluminum die cast that would be connected electrically conductively to the case of the device. The two shielding shells then could be shield-connected to the case of the device via this metal plate. Specifically, the second shielding shell is shield-connected to the case of the device via the metal plate by providing the metal plate with bolt fastening portions. Bolts then are used to fasten the second shielding shell to these bolt fastening portions, thereby delivering sufficient shielding performance in the second shielding shell. However, a method for producing the metal plate by aluminum die cast has higher production cost than a method for producing a metal plate by press-working a metal flat plate material. Further, the bolt fastening operations increase as the number of contacts increases and hence production costs increase.
The present invention was completed in view of the above situation and an object thereof is to improve shielding performance.
The invention relates to a mounting structure for a shielding shell assembly that covers a housing of a device connector that is to be connected to a case of a device. The device connector comprises a metal plate integral to the housing and configured to receive at least one mounting bolt for attaching and fixing the housing to the case of the device. The shielding shell assembly comprises first and second shielding shells. The first shielding shell is configured to cover a first side of the housing and has a first mounting portion. The second shielding shell is configured to cover a second side of the housing and has a second mounting portion. The first and second mounting portions are in the form of plates that are placed over one another and along the metal plate. The mounting bolt then is used to fasten the first and second mounting portions and the plate together and to the case of the device. Thus, the first and second shielding shells can be shield-connected to the case of the device via the metal plate and shielding performance can be improved. An aluminum die cast metal can have a bolt fastening portion formed with an internal thread, but a metal plate material cannot be formed with an internally threaded bolt fastening portion. However, both shielding shells are fastened together at a bolt fastening portion where the metal plate is bolt-fastened to the case of the device. Thus, both shielding shells are shield-connected to the case of the device via the metal plate without additional fastening operations. Therefore, shielding performance is improved without increasing the bolt fastening operations while production cost is suppressed by using the metal plate.
The first shielding shell may include a front wall that at least partly covers the housing from front. The second shielding shell may include a ceiling wall that at least partly covers the housing from above and two side walls that are adjacent to the ceiling wall and cover the housing from lateral sides.
The first and second shielding shells may be formed integrally or unitarily by punching a flat metal plate into a specified shaped by a press and then bending the plate at a boundary between the front wall and the ceiling wall. Thus, the first and second shielding shells can be handled as a unit. Time and effort to assemble the shielding shells can be saved and the shielding shells can be fastened more easily together to the metal plate.
The front wall may include an extended wall projecting laterally from the side wall. The first mounting portion may project backward by bending a part of the extended wall toward the ceiling wall and the second mounting portion may project sideways by bending a part of the side wall toward the ceiling wall. Thus, the first and second mounting portions project in different directions and easily can be placed one over the other while being crossed.
The second mounting portion may have a bolt hole for receiving the mounting bolt at a side of the extended wall.
The lateral edge of the second mounting portion may extend straight from the rear end of the side wall toward the bolt hole. According to this construction, the rear end of the second shielding shell and the bolt hole of the second mounting portion are connected linearly and a current at the rear end of the second shielding shell easily can be allowed to escape to the bolt hole so that shielding performance can be improved.
The connector housing may include a fixing portion that at least partly covers an opening edge portion of the opening while exposing an outer peripheral edge portion of the metal plate.
The fixing portion may include a first side sliding portion slidable relative to a first surface side of the metal plate, a second side sliding portion slidable relative to the second surface side of the metal plate. A coupling may be arranged in the opening and couples the first and second side sliding portions.
The first mounting portion may be substantially in the form of a plate extending along the metal plate and in contact with a surface of the metal plate. The second mounting portion may be substantially in the form of a plate lifted away from the surface of the metal plate by the thickness of the fixing portion and extending along the surface of the metal plate.
The second mounting portion may have at least one bolt hole and a part around the bolt hole may be slightly lower than other parts. The lower surface of this slightly lower part may be in contact with a surface of the metal plate of the housing.
These and other objects, features and advantages of the present invention will become more apparent upon reading of the following detailed description of preferred embodiments and accompanying drawings. It should be understood that even though embodiments are separately described, single features thereof may be combined to additional embodiments.
A terminal block in accordance with the invention is illustrated in
Each conductive plate 10 is formed from a conductive metal plate with good electrical conductivity. The metal plate is punched or cut into a specified shape by a press, and then is subjected to a specified bending process. As shown in
The device-side fastening portions 13 of the conductive plates 10 are to be bolt-fastened and connected electrically to device-side busbars (not shown) provided at the motor case. On the other hand, in an inverter or other such power supply device for supplying power, wires are arranged to extend toward the motor case and a wire-side connector (not shown) is provided at respective end portions of the wires. Wire-side terminals (not shown) connected to ends of the respective wire are provided in the wire-side connector and are bolt-fastened to the wire-side fastening portions 12 of the conductive plates 10 for electrical connection.
As shown in
The terminal main portion 11 of the conductive plate 10 in the center position extends substantially in the vertical direction VD and is substantially flat as shown in
As shown in
The wire-side fitting 51 is a wide box with a front opening 51A and an upper opening 51B, as shown in
As shown in
The wire-side fastening portions 12 of the conductive plates 10 are arranged to close the upper end openings of the nut accommodating portions 55 as shown in
An escaping recess 56 is provided below each nut accommodating portion 55 for allowing a leading end part of the fastening bolt penetrating through the nut N to escape when the fastening bolt is fastened to the nut N. The escaping recess 56 is narrower than the nut accommodating portion 55 in the lateral direction LD and is formed unitarily with the nut accommodating portion 55 by a slide die.
The flange 52 covers an opening edge portion of the opening 31 over substantially the entire periphery circumference, while exposing an outer peripheral edge of the metal plate 30. The flange 52 fixes the housing 50 on the metal plate 30 and sandwiches the metal plate 30 in a plate thickness direction TD. Specifically, as is clear from
The opening 31 has a substantially trapezoidal shape as shown in
The device-side fitting 53 is housed in the motor case when the terminal block is fixed to the motor case. Further, as shown in
As shown in
Mounting holes 32 are formed in the outer peripheral edge of the metal plate 30, as shown in
As shown in
As shown in
The second shielding shell 70B includes a ceiling wall 74 that at least partly covers the wire-side fitting 51 from above and two side walls 75 that are adjacent to the ceiling wall 74 and at least partly cover the wire-side fitting 51 from left and right sides. Fixing pieces 72 project sideways at lower edges of the side walls 75. Bolt holes 72A penetrate through front end portions of these fixing pieces 72 in the plate thickness direction TD and can receive the mounting bolts.
The extending walls 73A of the front wall 73 project sideways from the side walls 75 of the second shielding shell 70B. Overlapping pieces 76 project back from the lower ends of the extended walls 73A and bolt holes 76A penetrate through the overlapping pieces 76 in the plate thickness direction TD for receiving the respective mounting bolts. Further, the overlapping pieces 76 are arranged below the fixing pieces 72 so that the upper surfaces of the overlapping pieces 76 are in substantially surface contact with the lower surfaces of the fixing pieces 72. The bolt holes 76A of the overlapping pieces 76 and the bolt holes 72A of the fixing pieces 72 have substantially the same diameter and are arranged coaxially one above the other.
The first and second shielding shells 70A and 70B are coupled integrally at the front edge of the ceiling wall 74. That is, the first and second shielding shells 70A and 70B are formed unitarily by bending the front wall 73 toward the side walls 75 using a boundary part between the front wall 73 and the ceiling wall 74 as a bending edge after a metal flat plate is punched or cut into a specified shape by a press. Further, the overlapping pieces 76 are formed by bending lower end portions of the extended walls 73A toward the ceiling wall 74, and the fixing pieces 72 are formed by bending lower end portions of the side walls 75 toward the ceiling wall 74.
The overlapping pieces 76 are plates extending in surface contact with the upper surface of the metal plate 30. The fixing pieces 72 are plates lifted up from the upper surface of the metal plate 30 by the thickness of the flange 52 and extend along the upper surface of the metal plate 30. Parts of the fixing pieces 72 around the bolt holes 72A are slightly lower than the other parts, and the lower surfaces of these slightly lower parts are in surface contact with the upper surface of the metal plate 30 of the housing 50. The bolt holes 72A of the fixing pieces 72, the bolt holes 76A of the overlapping pieces 76 and the mounting holes 32 of the metal plate 30 are substantially coaxial when the wire-side fitting 51 is covered by the shielding shell 70. The first and second shielding shells 70A and 70B are shield-connected to the motor case via the metal plate 30 by inserting the mounting bolts through the holes 72A, 76A and 32 and fastening the mounting bolts to the motor case.
Lateral edges of the fixing pieces 72 extend straight from the rear ends of the lower edges of the side walls 75 toward the bolt holes 72A. Thus, the fixing pieces 72 have a substantially isosceles triangular plan view (see e.g.
A current based on high-frequency noise absorbed by the front wall 73 flows into the motor case via the extended walls 73A, the overlapping pieces 76 and the metal plate 30. Further, a current based on high-frequency noise absorbed by the braided wire H similarly can flow into the motor case via the extended walls 73A, the overlapping pieces 76 and the metal plate 30. On the other hand, a current based on high-frequency noise absorbed by the ceiling wall 74 can flow into the motor case via the side walls 75, the fixing pieces 72, the overlapping pieces 76 and the metal plate 30. Further, a current based on high-frequency noise absorbed by the side walls 75 also similarly can flow into the motor case via the fixing pieces 72, the overlapping pieces 76 and the metal plate 30.
As described above, the overlapping pieces 76 of the first shielding shell 70A and the fixing pieces 72 of the second shielding shell 70B are placed one over the other and fastened simultaneously with the metal plate 30 to the motor case. Thus, shielding performance of the second shielding shell 70B is improved drastically without increasing the number of bolt fastening operations. Further, the use of the metal plate 30 reduces material cost and production cost. Additionally, the fixing pieces 72 and the overlapping pieces 76 are fastened simultaneously, thereby facilitating assembly.
The first and second shielding shells 70A and 70B are formed unitarily. Thus, it is not necessary to assemble the shielding shells 70A, 70B together. Furthermore, the overlapping pieces 76 project back and the fixing pieces 72 project sideways. Therefore, the overlapping pieces 76 and the fixing pieces 72 easily can be placed one over the other while being crossed. Further, the lateral edges of the fixing pieces 72 extend substantially straight from the rear ends of the lower edges of the side walls 75 toward the bolt holes 72A. Thus, a current is allowed to more easily escape to the bolt holes 72A from the rear of the second shielding shell 70B and shielding performance is improved.
The invention is not limited to the above described embodiment. For example, the following embodiments also are included in the scope of the invention.
Although the first shielding shell 70A and the second shielding shell 70B are integrally or unitarily formed in the above embodiment, the two shielding shells may be separately formed and assembled later according to the present invention.
Although projecting directions of the overlapping pieces 76 and those of the fixing pieces 72 substantially are perpendicular in the above embodiment, the projecting directions of the overlapping pieces 76 and those of the fixing pieces 72 may be same or arranged at a different angle with respect to each other according to the present invention. That is, the overlapping pieces may be formed e.g. to project forward from the lower edges of the extended walls and the fixing pieces may be formed to project forward from the positions of the bolt holes 72A in the above embodiment.
Although the lateral edges of the fixing pieces 72 are formed to be substantially straight from the rear ends of the lower edges of the side walls 75 toward the bolt holes 72A in the above embodiment, the lateral edges of the fixing pieces 72 may be curved or extend at right angles according to the invention.
Although a pair of fixing pieces 72 and a pair of overlapping pieces 76 are provided in the above embodiment, one fixing piece and one overlapping piece may be provided or three or more fixing pieces and three or more overlapping pieces may be provided according to the invention.
Number | Date | Country | Kind |
---|---|---|---|
2001-056335 | Mar 2011 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5718605 | Morikawa et al. | Feb 1998 | A |
6786770 | Huang | Sep 2004 | B1 |
6948980 | Xiang et al. | Sep 2005 | B2 |
7179125 | Chen et al. | Feb 2007 | B2 |
7261592 | Korsunsky et al. | Aug 2007 | B2 |
7572150 | Matsuoka | Aug 2009 | B2 |
7878855 | Li | Feb 2011 | B2 |
20010039143 | Ikeda | Nov 2001 | A1 |
20070249226 | Yang et al. | Oct 2007 | A1 |
20080311793 | Zhang et al. | Dec 2008 | A1 |
20100216323 | Kawamura et al. | Aug 2010 | A1 |
Number | Date | Country |
---|---|---|
2006-196198 | Jul 2006 | JP |
Number | Date | Country | |
---|---|---|---|
20120238138 A1 | Sep 2012 | US |