1. Field of the Invention
The present invention relates to a dielectric filter, dielectric filter device, dielectric duplexer, and a communication device having these, which are applied to, for example, high-frequency circuits for mobile communication terminals.
2. Description of the Related Art
The mounting structure of a related dielectric duplexer is shown in
In such a dielectric duplexer in which a plurality of resonator holes are provided in a dielectric block, each resonator operates in the TEM mode. However, in the dielectric block in the form of a substantially rectangular parallelepiped on the outer surface of which the outer conductor 4 is formed, the space enclosed by the outer conductor 4 functions as a resonance space for the TE mode and spurious signals (unwanted waves) of the TE mode are generated. This becomes a problem since, in particular, the TE101 mode (mode represented by TExyz when the length and breadth of the mounting surface of the dielectric block are x and y axes and the height is the z axis) becomes close to the frequency band of the TEM mode to be used.
In communication equipment such as portable communication terminals (portable telephones), etc., in designing the devices, a large attenuation value in a frequency band that is two or three times as wide as the transmission frequency band must be secured. For example, in the case of a W-CDMA portable telephone system, since the transmission frequency band on the terminal side is 1920 to 1980 MHz, twice the frequency band (3840 to 3960 MHz) or three times the frequency band (5760 to 5940 MHz) must be secured. In a dielectric filter using the related dielectric block, when a duplexer for the W-CDMA terminal is designed, the peak frequency of the TE101 mode is in the vicinity of 4000 MHz, which is close to twice the transmission frequency band.
Although the peak frequency of the TE101 mode can be changed by the outer dimensions of the dielectric block, when the shift of the peak frequency of the TE101 mode to a fixed frequency is added as a design element, it is not possible to obtain the best characteristics of the TEM mode to be used.
What is described above is valid not only for dielectric duplexers, but also for dielectric filters using dielectric blocks.
Accordingly, it is an object of the present invention to solve the above-described problem by suppressing spurious signals such as the TE mode, etc., generated in dielectric filters (including dielectric duplexers) using a dielectric block.
According to the present invention, a dielectric filter comprises a dielectric block in the form of a substantially rectangular parallelepiped; resonator holes for resonators and excitation holes for excitation coupled to the resonators, the resonator holes and excitation holes, on the inner surface of which an inductor extending from one surface of the dielectric block to the other surface opposite thereto is formed, the holes being provided inside the dielectric block; input-output terminals electrically connected to the inner conductor of the excitation holes, respectively, and an outer conductor formed on the outer surface of the dielectric block; a mounting substrate on which the dielectric block is mounted; a grounding electrode electrically connected to the outer conductor of the dielectric block and input-output electrodes electrically connected to the input-output terminals provided on the mounting surface of the mounting substrate; a grounding electrode provided on the surface opposite to the mounting surface of the mounting substrate; and grounding-electrode-free portions provided on the mounting substrate at locations opposite to the input-output electrodes.
Because of the above structure, since the electric field strengths or electric lines of force in the upward and downward directions generated between the vicinity of the electrically open-circuited end of the excitation hole (the vicinity of the input-output terminal electrically connected to the inner conductor on the inner surface of the excitation hole) and the outer conductor are balanced, the excitation of the TE mode can be suppressed.
Furthermore, according to the present invention, a dielectric filter comprises a dielectric block in the form of a substantially rectangular parallelepiped; resonator holes for resonators and excitation holes for excitation coupled to the resonators, the resonator holes and excitation holes, on the inner surface of which an inductor extending from one surface of the dielectric block to the other surface opposite thereto is formed, the holes being provided inside the dielectric block; input-output terminals electrically connected to the inner conductor of the excitation holes, respectively, and an outer conductor formed on the outer surface of the dielectric block; a mounting substrate on which the dielectric block is mounted; an adapter substrate disposed between the dielectric block and the mounting substrate; a grounding electrode electrically connected to the outer conductor of the dielectric block and input-output electrodes electrically connected to the input-output terminals, the grounding electrode and input-output electrodes extending from the surface of the adapter substrate with which the dielectric block makes contact to the mounting surface for mounting to the mounting substrate, the grounding electrode and input-output electrodes being provided in the adapter substrate; grounding-electrode-free portions provided at locations, opposite to the input-output electrodes provided on the surface with which the dielectric block makes contact, on the mounting surface of the adapter substrate for mounting to the mounting substrate; and electrodes provided on the mounting substrate in accordance with the grounding electrode and input-output electrodes formed on the mounting surface of the adapter substrate.
Because of the above structure, since the electric field generated between the joint surface, which is between the input-output terminal electrically connected to the inner conductor on the inner surface of the excitation hole and the adapter substrate, and the grounding electrodes, which belong to the adapter substrate and the mounting substrate, is weakened, the electric field strengths in the downward direction (in the direction of the mounting surface) and in the upward direction (in the direction of the surface opposite to the mounting surface) of the excitation hole are balanced and accordingly the excitation of the TE mode can be suppressed.
In a dielectric filter device of the present invention, a dielectric filter having the above structure is joined to an adapter substrate.
Accordingly, when the dielectric filter device having the structure is mounted on a mounting substrate and when the electrode pattern on the mounting surface of the mounting substrate is formed in accordance with the electrode pattern on the mounting surface of the adapter substrate, the adapter substrate is to be disposed between the dielectric filter and the mounting substrate and, as a result, the above described effect can be obtained.
In the same way as in the structure of the dielectric filter, a dielectric duplexer of the present invention comprises a single dielectric block in the form of a substantially rectangular parallelepiped; resonator holes for resonators and excitation holes for excitation coupled to the resonators, the resonator holes and excitation holes, on the inner surface of which an inductor extending from one surface of the dielectric block to the other surface opposite thereto is formed, the holes being provided inside the dielectric block; input-output terminals electrically connected to the inner conductor of the excitation holes, respectively, and an outer conductor formed on the outer surface of the dielectric block; a mounting substrate on which the dielectric block is mounted; a grounding electrode electrically connected to the outer conductor of the dielectric block and input-output electrodes electrically connected to the input-output terminals provided on the mounting surface of the mounting substrate; a grounding electrode provided on the surface opposite to the mounting surface of the mounting substrate; and grounding-electrode-free portions provided on the mounting substrate at locations opposite to the input-output electrodes. In the dielectric duplexer, the input-output terminals constitute an antenna terminal, transmission signal input terminal, or reception signal output terminal, and the resonators constitute a transmission filter portion allowing signals in the transmission frequency band to pass through and a reception filter allowing signals in the reception frequency band to pass through.
Because of this structure, the electric field strengths in the upward and downward directions between the vicinity of the electrically open-circuited end of the excitation hole and the outer conductor are balanced and, as a result, the excitation of the TE mode is suppressed.
In the same way as in the structure of the dielectric filter, a dielectric duplexer of the present invention comprises a single dielectric block in the form of a substantially rectangular parallelepiped; resonator holes for resonators and excitation holes for excitation coupled to the resonators, the resonator holes and excitation holes, on the inner surface of which an inductor extending from one surface of the dielectric block to the other surface opposite thereto is formed, the holes being provided inside the dielectric block; input-output terminals electrically connected to the inner conductor of the excitation holes, respectively, and an outer conductor formed on the outer surface of the dielectric block; a mounting substrate on which the dielectric block is mounted; an adapter substrate disposed between the dielectric block and the mounting substrate; a grounding electrode electrically connected to the outer conductor of the dielectric block and input-output electrodes electrically connected to the input-output terminals, the grounding electrode and input-output electrodes extending from the surface of the adapter substrate with which the dielectric block makes contact to the mounting surface for mounting to the mounting substrate, the grounding electrode and input-output electrodes being provided on the adapter substrate; grounding-electrode-free portions provided at locations, opposite to the input-output electrodes provided on the surface with which the dielectric block makes contact, on the mounting surface of the adapter substrate for mounting to the mounting substrate; and electrodes provided on the mounting substrate in correspondence with the grounding electrode and input-output electrodes formed on the mounting surface of the adapter substrate. In the dielectric duplexer, the input-output terminals constitute an antenna terminal, transmission signal input terminal, or reception signal output terminal, and the resonators constitute a transmission filter portion allowing signals in the transmission frequency band to pass through and a reception filter allowing signals in the reception frequency band to pass through.
Because of the above structure, since the electric field generated between the joint surface of the input-output terminal electrically connected to the inner conductor on the inner surface of the excitation hole and the adapter substrate and the grounding electrode of the adapter substrate and the mounting substrate is weakened, the electric field distribution in the upward and downward directions in the vicinity of the electrically open-circuited end of the excitation hole is balanced and, as a result, the excitation of the TE mode is suppressed.
A communication device of the present invention comprises a dielectric filter or dielectric duplexer of the present invention. With this structure, because of the filtering characteristics in which spurious signals are suppressed, the transmission and cutoff of transmission signals, reception signals, or both in a fixed frequency band can be reliably performed to obtain a communication device having excellent communication characteristics.
The mounting structure of a dielectric duplexer according to a first embodiment of the present invention is described with reference to
While the inner conductor is formed on the inner surface of the resonator holes 2a to 2f, inner-conductor-free portions g are provided in the vicinity of one end and form electrically open-circuited ends of the resonators. Furthermore, the inner conductors are electrically connected to the outer conductor 4 on the outer surface of the dielectric block 1 at the end portions of the resonator holes opposite to the end portions where the inner-conductor-free portions g are provided and these end portions form electrically short-circuited ends of the resonators. The inner conductors on the inner surface of the excitation holes 3a and 3b are electrically connected to the input-output terminals 5a and 5b at one end portion of the inner conductors and are electrically connected to the outer conductor 4 on the outer surface of the dielectric block 1 at the other end portion. Another input-output terminal 5c is capacitively coupled to the electrically open-circuited end of the resonator hole 2f to produce capacitance.
Each of the resonator holes 2a to 2f is constructed so as to have a stepped impedance such that the inner diameter at the electrically open-circuited end of the resonator hole is made larger and the inner diameter at the electrically short-circuited end of the resonator hole is made smaller. Resonator hole 2a is interdigitally coupled to the excitation hole 3a. Since the electrically short-circuited ends of the resonator holes 2b and 2c are relatively close to each other, the two resonators based on the resonator holes 2b and 2c are inductively coupled to each other. Since the electrically open-circuited ends of the resonator holes 2d, 2e, and 2f are relatively close to each other, the three resonators based on the resonator holes 2d, 2e, and 2f are capacitively coupled to each other. Furthermore, the excitation hole 3b is interdigitally coupled to each of the two resonators based on the resonator holes 2c and 2d.
When thus constructed, a two-stage resonator made of the resonator holes 2b and 2c functions as a band-pass filter having an attenuation pole on the high-frequency side and the resonator made of the resonator hole 2a functions as a trap resonator in which a fixed frequency is attenuated. Furthermore, a three-stage resonator made of the resonator holes 2d, 2e, and 2f functions as a band-pass filter having an attenuation pole on the low-frequency side.
In this way, the dielectric duplexer is used such that the input-output terminal 5a forms a transmission signal input terminal, the input-output terminal 5b forms an antenna terminal, the input-output terminal 5c forms a reception signal output terminal, a filter made of the resonator provided with the resonator holes 2a to 2c is used as a transmission filter, and a filter made of the resonator provided with the resonator holes 2d to 2f is used as a receiving filter.
In
Although the size of the grounding-electrode-free portions 11a and 11b shown in
As shown in
As shown in
As shown in
Therefore, the size and location of the grounding-electrode-free portion 11 can be decided so that the spurious mode may be suppressed to the utmost.
Moreover, in the present embodiment, although the two excitation holes are provided, one or three excitation holes may be provided. Furthermore, although a plurality of excitation holes are provided, a grounding-electrode-free portion may be provided only at a location opposite to an input-output terminal electrically connected to the inner conductor of a principal excitation hole. For example, in the structure shown in
Next, the structure of a dielectric duplexer device according to a second embodiment of the present invention is described with reference to
The dielectric duplexer device contains a dielectric duplexer having the related structure and a new adapter substrate.
An adapter substrate 16 is shown in the drawings and input-output electrodes 18a, 18b, and 18c are formed from the upper surface through to the lower surface of the insulating substrate. A grounding electrode 17 is formed on the upper surface of the adapter substrate 16 and a grounding electrode 20, which is electrically connected to the grounding electrode 17 on the upper surface, is formed on the lower surface side. A grounding-electrode-free portion 21 is provided in an area on the lower surface opposite to the area in which the input-output electrode 18b is formed.
When the dielectric duplexer 30 is joined to the adapter substrate 16, a dielectric duplexer device constituting one part is constructed.
When thus constructed, in the same way as shown in
Moreover, in the present embodiment, although a dielectric duplexer having two excitation holes is shown, only one excitation hole or three excitation holes may be provided. Furthermore, grounding-electrode-free portions may be provided at locations opposite to the input-output terminals electrically connected to the inner conductor of a plurality of excitation holes, respectively. For example, a grounding-electrode-free portion may be provided at a location opposite to the input-output electrode 18a in the structure shown in
Moreover, in the first and second embodiments, although dielectric duplexers are shown, the invention can be applied to dielectric filters in which a single filter is constructed in a dielectric block.
Next, the structure of a communication device according to a third embodiment of the present invention is described with reference to FIG. 7.
In
The mixer MIXa mixed a transmission intermediate-frequency signal IF and a signal output from the frequency synthesizer SYN, the bandpass filter BPFa allows only a mixed output signal in the transmission frequency band from the mixer MIXa to pass through, and the amplifier AMPa amplifies the mixed output signal to transmit the signal through the duplexer DPX from the antenna ANT. The amplifier AMPb amplifies a reception signal from the duplexer DPX. The bandpass filter BPFb allows only a reception signal in the reception frequency band output from the amplifier AMPb to pass through. The mixer MIXb mixes a signal output from the frequency synthesizer SYN and a reception signal to output the reception intermediate-frequency signal IF.
A signal processing circuit comprises an audio codec, a TDMA synchronous control circuit, a modulator, a demodulator, a CPU, etc., and a communication device is constructed as a mobile communication terminal (portable telephone) such that a microphone, a loudspeaker, a display, a battery, etc. are connected to the input portion of the signal processing circuit.
In the above bandpass filters BPFa and BPFb, the above-described dielectric filter is used, and, in the duplexer DPX, a dielectric duplexer according to the first or second embodiment of the present invention is used.
In this way, when a dielectric duplexer or dielectric filter having less spurious signals is used, the transmission and cutoff of transmission signals, reception signals, or both in a fixed frequency band can be reliably performed and a communication device having excellent communication characteristics can be obtained.
According to the present invention, the electric field strengths generated in upward and downward directions between the vicinity of an electrically open-circuited end of an excitation hole and an outer conductor are balanced to suppress the excitation of spurious TE-mode signals, etc.
Furthermore, according to the present invention, when a dielectric filter device having the structure in which a dielectric filter and an adapter substrate are joined is mounted on a mounting substrate, the above-described effect can be obtained simply by forming an electrode pattern on the mounting surface of the mounting substrate in accordance with the electrode pattern on the mounting surface of the adapter substrate.
According to the present invention, because of the filtering characteristics in which spurious signals are suppressed, the transmission and cutoff of transmission signals, reception signals, or both in a fixed frequency band can be reliably performed to obtain a communication device having excellent communication characteristics.
Although the present invention has been described in relation to particular embodiments thereof, many other variations and modifications and other uses will become apparent to those skilled in the art. It is preferred, therefore, that the present invention be limited not by the specific disclosure herein, but only by the appended claims.
Number | Date | Country | Kind |
---|---|---|---|
2002-177655 | Jun 2002 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
5572175 | Tada et al. | Nov 1996 | A |
5691674 | Yorita et al. | Nov 1997 | A |
Number | Date | Country | |
---|---|---|---|
20030231081 A1 | Dec 2003 | US |