The present invention relates to sports equipment and, in particular, to sports equipment that may easily be reconfigured to accommodate different sports activities.
Young athletes often participate in multiple sports. Different sports employ different balls and devices and require different skills. To develop skills for different sports, different activities and training equipment is often used. For example, a basketball hoop and backboard may be used for basketball training, a target may be used for baseball or football training, and a net may be used for soccer training. Further, sports training equipment is often created for use by older children and adults. Adapting sports training equipment for use by smaller children is often either difficult or impossible.
The need exists for sports equipment that can easily be reconfigured for different sporting activities and/or that facilitates the use of existing adult sports training equipment for smaller children.
The present invention may be embodied as a mounting system for mounting a plurality of sport devices to a plurality of structures comprising a device attachment system and a structure attachment system. The device attachment system comprises a plurality of distal portions and a plurality of proximal portions. The structure attachment system attaches one of the proximal portions to each of the structures. Each of the distal portions is attached to one of the sport devices. Each of the distal portions is detachably attachable to each of the proximal portions to allow each of the sport devices to be detachably attached to each of the plurality of structures.
The present invention may also be embodied as a method of mounting a plurality of sport devices to a plurality of structures comprising the following steps. A proximal portion is attached to each of the structures. A distal portion is attached to each of the sport devices. Each of the distal portions is detachably attached to each of the proximal portions such that each of the sport devices is detachably attached to each of the plurality of structures.
The present invention may also be embodied as a mounting system for mounting a sport device to a structure comprising a device attachment system and a structure attachment system. The device attachment system comprising a frame and a mount. The frame defines at least one hook portion, where the frame is attached to the sport device. The mount defines at least one primary support flange. The structure attachment system attaches the mount to the structure. The frame is detachably attached to the mount to detachably attach the sport device to the structure.
Referring initially to
Examples of the sport devices 22 include basketball backboard and hoop assemblies, football and/or baseball targets, soccer goals, and protective padding. Examples of structures 24 include poles, walls, and posts. The structures may be free-standing (e.g., poles) or form a part of a larger structure (walls and posts).
The first example sports mounting system 20 comprises a first example device attachment system 30 and one or more structure attachment systems 40. The first example device attachment system 30 comprises one or more distal portions 50 attached to the device(s) 22 and one or more proximal portions 52 attached to the structure(s) 24. Each distal portion 50 is adapted to be detachably attached to a proximal portion 52 to secure the device 22 relative to the structure 24.
The first example sports mounting system 20 depicted in
The first example sports mounting system 20 operates in any one of four separate configurations: a first configuration in which the first device 22a is mounted to the first structure 24a (
The example first structure 24a is an upright member such as a post or pole, and the first example structure attachment system 40a comprises a clamp plate 60 and a plurality of bolt assemblies 62 each comprising a nut 64 and a bolt 66. The upright member forming the first structure 24a is clamped between the proximal portion 52 of the device attachment system 30 and the clamp plate 60 using the bolt assemblies 62.
The example second structure 24b is a vertical such as a wall, and the second example structure attachment system 40b comprises a plurality of lag screws 70. The lag screws 70 are passed through the proximal portion 52 of the device attachment system 30 and threaded into a structural portion (e.g., studs, header) of the wall forming the second structure 24b.
The first example sports mounting system 20 thus allows multiple sport devices of different types to be used at multiple locations adjacent to structures of different types without the need to purchase multiple sport devices of the same type. The first example sports mounting system 20 further facilitates the use of the same structure to support multiple sport devices of different types. In addition, the first example sports mounting system 20 may be used with a single sport device, more than two sport devices, a single structure, more than two structures, a single distal portion, more than two distal portions, a single proximal portion, and/or more than two proximal portions.
Turning now to
The second example sports mounting system 120 comprises a second example device attachment system 130 and a plurality of structure attachment systems 140a, 140b, and 140c. The device attachment system 130 comprises a distal portion 150 and a proximal portion 152.
The first example structure attachment system 140a comprises a clamp plate 160 and a plurality of bolt assemblies 162. Each bolt assembly 162 comprises a bolt 164 and a nut 166. The example attachment system 140a comprise four of the bolt assemblies 162. The second example structure attachment system 140b comprises a plurality of lag screws 170. The third example structure attachment system 140c comprises at least one U-bolt assembly 180 comprising a U-bolt 182 and nuts 184.
Turning now to
More specifically, the example frame structures 230 each comprise a frame member 260 and a guide member 262. The example frame members 260 each comprise a frame plate 270, first and second side flanges 272a and 272b, and first and second end tabs 274a and 274b. The example first and second side flanges 272a and 272b are substantially orthogonal to a plane defined by the frame plate 270. The example first and second end tabs 274a and 274b are substantially orthogonal to a plane defined by the frame plate 270 and to planes defined by the first and second side flanges 272a and 272b. During normal use of the frame members 260, the first and second side flanges 272a and 272b are substantially vertical, while the first and second end tabs 274a and 274b are substantially horizontal. The first and hook portions 250 are formed in the side flanges 272a and 272b and, during normal use, the hook slots 252 are substantially vertical with an open lower end and a closed upper end. Each example guide member 262 comprises a guide plate 280 and first and second guide flanges 282 and 284. First and second guide openings 286 and 288 are formed in the first and second guide flanges 282 and 284, respectively.
The example latch member 240 defines at least one engaging portion 290 and a handle portion 292. A cam surface 294 is formed on each engaging portion 290, while a biasing pin 296 (
To form the latch assembly 222, the at least one engaging portion 290 extends through the first and second guide openings 286 and 288 in the first and second guide flanges 282 and 284 such that the latch member 240 is supported for movement relative to the frame 220. In particular, the latch member 240 can be moved between a latched position (
Further, the example biasing member 242 is a compression spring arranged to bias latch member 240 into the latched position. In particular, the biasing member 242 is supported at one end by the second guide flange 284 and engages the biasing pin 296 such that movement of the latch member 240 from the latched position to the unlatched position compresses the spring forming the biasing member 242. So compressed, the spring forming the biasing member 242 applies a biasing force on the latch member 240 through the biasing bin 296 that biases the latch member 240 into the latched position.
In the example latch assembly 222, the example latch member 240 defines two engaging portions 290a and 290b, and the compression springs forming the first and second biasing springs 242a and 242b are helical structures that surround portions of the engaging portions 290a and 290b. The frame 220 thus comprises two frame structures 230a and 230b, one for each of the engaging portions 290a and 290b.
The example frame structures 230a and 230b are attached to the device 122 using the end tabs 274a and 274b. Bolts, welding, or other means may be employed to detachably or rigidly secure the frame structures 230a and 230b to the device 122.
Turning now to
The example frame member 260, example guide member 262, and example mount 320 are each made of a flat metal sheet cut and bent into the shapes depicted in the drawings. The example guide member 262 may be welded or otherwise secured to the frame member 260 such that the guide member 262 rigidifies the frame member 260. The example side walls 336 and 338 of the mount may be welded or otherwise secured to the primary support wall 332 and secondary support wall 334 to rigidify the mount 320.
The bolt assemblies 162, lag screws 170, or U-bolt assemblies 180 extend through the mounting holes 340 to detachably attach the mount 320 to the structures 124a, 124b, and/or 124c. Tools may be required to attach the mount 320 to and detach the mount 320 from the pole 124a, wall 124b, or post 124c.
With the mount 320 attached to the pole 124a, wall 124b, or post 124c, the primary support wall 332 and secondary support wall 334 are substantially horizontal and the primary support flange 350 is substantially vertical. In this configuration, the main notch edge 354 is substantially horizontal and the side notch edges 356 and 358 are substantially vertical.
With the mount 320 so supported and the at least one frame structure 230 secured to the device 122, the device 122 is then displaced such that the frame structure(s) 230 engage and are supported by the mount 320. The example mount 320 engages the frame structure(s) 230 such that the device 122 is supported at a desired height and orientation relative to the pole 124a, wall 124b, or post 124c. The example mount 320 further engages the frame structures 230 to inhibit lateral and upward movement of the device 122 relative to the mount 320. Further, the latch assembly 222 engages the mount 320 to prevent pivoting and lateral movement of the device relative to the mount 320.
Referring now to
Initially, the device 122 is displaced such that the hook portions 250 are adjacent to the primary support wall 332 as shown in
With the hook slots 252 supported by the primary support flange 350, the hook portions 250 further abut one of the side notch edges 356 and 358 adjacent thereto. Engagement of the hook portions 250 with the side notch edges 356 and 358 inhibits lateral movement of the device 122 relative to the mount 320.
With the hook slots 252 supported by the primary support flange 350, the side flanges 272 engage the secondary support wall 334 to prevent rearward rotation of the device 122 about the pivot axis defined by the closed ends of the hook slots 252. Further, the innermost side flanges 272 of the frame members 260 are arranged to the outside of the brace flange 362 extending from the secondary support wall 334. Engagement of the innermost side flanges 272 with the brace flange 362 inhibits lateral movement of the device 122 relative to the mount 320.
Additionally, when the hook slots 252 receive the primary support flange 350, the first guide flange 282 is below and adjacent to, or perhaps in contact with, the secondary support wall 334. In the example shown, four of the stop edges 256 engage the secondary support wall 334 to inhibit upward movement of the device 122 relative to the mount 320.
When the latch member 240 is in the latched configuration, the engaging portion(s) 290 thereof extend through the latch openings 360 in the secondary support wall 334. The latch assembly 222 thus further engages the secondary support wall 334 to prevent forward rotation of the device 122 about the pivot axis defined by the closed ends of the hook slots 252.
In particular, the example latch assembly 222 is configured to be displaced from the latched position to the unlatched position as the device 122 is lowered and pivoted onto the mount 320. In particular, after the hook portion(s) 250 engage the primary support flange 350, allowing the device 122 to pivot causes the cam surfaces 294 on the engaging portions 290 of the latch member 240 engage the secondary support wall 334 such that a force is applied to the latch member 240 against the biasing force of the biasing member(s) 242. The latch member 240 is thus displaced into its unlatched configuration and is held there until the device 122 is substantially parallel to the main wall 330 of the mount 320. At this point, the engaging portion(s) 290 are aligned with the latch opening(s) 360. When the engaging portion(s) 290 are aligned with the latch opening(s) 360, the biasing member(s) 242 return the latch member(s) 240 to the latched configuration. At this point, the second example device attachment system 130 is in its latched configuration.
The process is substantially reversed to remove the device 122 from the mount 320. Initially, the handle portion 292 is grasped, and the latch member 240 is displaced against the force of the biasing member 242 such that the latch member 240 is in the unlatched position. At this point, the second example device attachment system 130 is in its unlatched configuration. The device 122 may be rotated upwardly about the pivot axis and lifted such that the distal portion 150 is disengaged from the proximal portion 152.
In the second example sports mounting system 320, the device 122 may be moved from the pole 124a, to the wall 124b, or to the post 124c. In this case, three of the mounts 320, each with an associated structure attachment systems 140a, 140b, or 140c, are used. With the structure attachment systems 140a, 140b, and/or 140c in place, the second example sports mounting system 320 may thus be easily and quickly moved to various locations depending on the user's needs without the use of tools.
Referring now to
The fourth example structure attachment system 422 comprises a support arm 430 and a brace arm 432. In use, the example support arm 430 supports a support plate 440 in a predetermined orientation relative to the bleacher assembly 424. In the fourth example structure attachment system 430, bolt assemblies 442 are used to secure the proximal portion 152 of the second example device attachment system 130 to the support plate 440. Optionally, the proximal portion of the second device attachment system 130 may be integrally formed with the support plate. As another alternative, the proximal portion may be directly attached to or integrally formed with the support arm 430.
The example support arm 430 further comprises a hook portion 444 defining a gap portion 446 and a return portion 448. The gap portion 446 is sized and dimensioned to fit within a gap G defined by the bleacher seats 426 and the bleacher backrests 428 when the bleacher assembly 424 is in its closed configuration as shown in
The example brace arm 432 extends from the distal end of the support arm 430 adjacent to the support plate 440 to a region of the bleacher assembly 424 below the region at which the hook portion 444 engages the bleacher assembly 424. A brace plate 450 is secured to the brace arm 432 to distribute forces transmitted through the brace arm to the bleacher assembly 424. Padding may be used to inhibit marring of the bleacher assembly 424 by the brace plate 450.
The fourth example structure attachment system 422 allows the example device 122 to be detachably attached to the bleacher assembly 424 to increase the number of basketball goals in a gymnasium that are available to smaller children.
Referring now to
The fourth example structure attachment system 462 comprises a support portion 470 and a brace portion 472. In use, the example support portion 470 supports a support plate 480 in a predetermined orientation relative to the bleacher assembly 464. In the fourth example structure attachment system 462, bolt assemblies 482 are used to secure the device 122 directly to the support plate 480. Optionally, the device may be integrally formed with the support plate. As another alternative, the device may be directly attached to or integrally formed with the support portion 470.
The example support portion 470 further comprises a hook portion 484 defining a gap portion 486 and a return portion 488. The gap portion 486 is sized and dimensioned to fit within a gap G defined by the bleacher seats 466 and the bleacher backrests 468 when the bleacher assembly 464 is in its closed configuration as shown in
The example brace portion 472 engages a region of the bleacher assembly 464 below the region at which the hook portion 484 engages the bleacher assembly 464. A brace plate 490 is secured to the brace portion 472 to distribute forces transmitted through the brace arm to the bleacher assembly 464. Padding may be used to inhibit marring of the bleacher assembly 464 by the brace plate 490.
The fifth example structure attachment system 462 allows the example device 122 to be detachably attached to the bleacher assembly 464 to increase the number of basketball goals in a gymnasium that are available to smaller children.
Referring now to
The reconfigurable device assembly 522 may be used with the device attachment system 130 and structure attachment system 140a to support the target portion 526 relative to the pole 124a as depicted in
The example intermediate portion 524 of the example reconfigurable device assembly 522 comprises a first mounting tube 530. The illustrated example of the intermediate portion 524 additionally optionally comprises a second mounting tube 532. The mounting tubes 530 and 532 are rigidly connected to the frame structures 230 of the frame 220 of the distal portion 150 of the device attachment system 130.
The first example target system 526a comprises at least one primary offset tube 540, at least one target plate 542 supported by the first offset tube 540, and at least one retaining pin 544. The first example target system 526a further comprises at least one secondary offset tube 546 that also supports the target plate 542. The example primary offset tubes 540 and secondary offset tubes 546 are attached to the target plate 542 such that the spacing therebetween is the same as a spacing between the mounting tubes 530 and 532. The offset tubes 540 and 546 are sized and dimensioned to fit within at least a portion of the mounting tubes 530 and 532. With the offset tubes 540 and 546 within at least a portion of the mounting tubes 530 and 532, the retaining pins 544 are inserted through the mated pairs of tubes 540 and 530 and tubes 546 and 532 to inhibit removal of the offset tubes 540 and 546 from the mounting tubes 530 and 532, respectively. The offset tubes 540 and 546 thus support the at least one target plate 542 in a desired relationship to the pole 124a or other structure as desired.
The illustrated example of the first example target system comprises first and second primary offset tubes 540a and 540b, first and second secondary offset tubes 546a and 546b, first and second target plates 542a and 542b, and a plurality of retaining pins 544. The first and second target plates 542a and 542b are supported on either side of the pole 124a as depicted in
The second example target system 526b comprises at least one frame structure 550, a net 552, and one or more retaining pins 554. The at least one frame structure comprises a primary lateral tube 560, a side tube 562, and, optionally, a secondary lateral tube 564. The primary and secondary lateral tubes 560 and 564 are rigidly connected to the side tube 562 such that the lateral tubes 560 and 564 are spaced from each other a distance equal to that between the primary and secondary mounting tubes 530 and 532. The lateral tubes 560 and 564 are further sized and dimensioned to fit within at least a portion of the mounting tubes 530 and 532. With the lateral tubes 560 and 564 within at least a portion of the mounting tubes 530 and 532, the retaining pins 554 are inserted through the mated pairs of tubes 560 and 530 and tubes 564 and 532 to inhibit removal of the lateral tubes 560 and 564 from the mounting tubes 530 and 532, respectively. The lateral tubes 560 and 564 thus support at least one frame structure 550 in a desired relationship to the pole 124a or other structure as desired.
The illustrated example of the second example target system 526b comprises first and second frame structures 550a and 550b. Accordingly, the second example target system 526b comprises first and second primary offset tubes 560a and 560b, first and second secondary offset tubes 564a and 564b, and a plurality of retaining pins 554. The primary and secondary frame structures 550a and 550b are supported on either side of the pole 124a as depicted in
Turning now to
Rear engaging edges 870 and 872 of the primary brace wall 832 and the secondary brace wall 834, respectively, are configured to engage the structures 124a, 124b, and/or 124c to inhibit movement of the proximal portion 820 relative to the structures 124a, 124b, and/or 124c during use. The example engaging edges 870 and 872 comprise angled portions adapted to engage the circular pole structure 124a, but these engaging edges 870 and 872 may be straight for the flat wall structure 124b or post structure 124c. To allow the brace walls 832 and 834 to be modified in situ to accommodate different structure shapes, score lines 874 and 876 may formed in the walls 832 and 834 to allow portions thereof to bent down or up to form flat surfaces perhaps more appropriate for engaging the flat wall structure 124b or post structure 124c.
The example mount 822 is made of a flat metal sheet cut and bent into the shape depicted in the drawings. The example side walls 836 and 838 of the mount may be welded or otherwise secured to the primary brace wall 832 and secondary brace wall 834 to rigidify the mount 822. The example primary and secondary brace walls 832 and 834 and the example first and second side walls 836 and 838 are bent such that these walls 832-838 are directed towards the structures 124a, 124b, and 124c when in use.
The bolt assemblies 162, lag screws 170, or U-bolt assemblies 180 extend through the mounting holes 840 to detachably attach the mount 822 to the structures 124a, 124b, and/or 124c. Tools may be required to attach the mount 822 to and detach the mount 822 from the pole 124a, wall 124b, or post 124c. Alternatively, a skewer assembly 880 may be used in place of the bolt assembly 162. The example clamp assembly 880 comprises a bolt 882 and a cam assembly 884. The example cam assembly 884 comprises a nut portion 886 and a lever portion 888. The lever portion 888 forms a cam action that allows the bolt 882 to be tightened without the use of tools. The example clamp assembly 880 is or may be similar to quick release clamps used to detachably attach bicycle components (e.g., wheels, seat) relative to a bicycle frame.
With the mount 822 attached to the pole 124a, wall 124b, or post 124c, the primary brace wall 832 and secondary brace wall 834 are substantially horizontal. In this configuration, the main notch edge 852 is substantially horizontal. The side notch edges 854 and 856 are angled with respect to horizontal. The angle between the example side notch edges 854 and 856 and horizontal is less than 90 degrees as shown in
With the mount 822 so supported and the at least one frame structure 230 secured to the device 122, the device 122 is then displaced such that the frame structure(s) 230 engage and are supported by the mount 822. The example mount 822 engages the frame structure(s) 230 such that the device 122 is supported at a desired height and orientation relative to the pole 124a, wall 124b, or post 124c. The example mount 822 further engages the frame structures 230 to inhibit lateral and upward movement of the device 122 relative to the mount 822. Further, the latch assembly 222 engages the mount 822 to prevent pivoting and lateral movement of the device relative to the mount 822.
The process of using the second example device attachment system 130 incorporating the proximal portion 820 is similar to that described above with respect to claim 10-13. In particular, the device 122 is attached to the mount 822, and thus to the pole 124a, wall 124b, and/or post 124c to which the mount 822 is attached, using the proximal portion 820 as follows.
Initially, the device 122 is displaced such that the hook portions 250 are adjacent to the main wall 830. The device 122 is then displaced and tilted such that the hook portions 250 extend over the mounting holes 840 formed in the main wall 830. The device 122 is then lowered and pivoted about a pivot axis defined by the closed ends of the hook slots 252 such that the hook slots 242 receive the main wall 830. With the hook portions 250 supported by the main wall 830, the closed ends of the hook slots 252 engage the main notch edges 852. The engagement of the hook portions 250 and the primary brace wall 832 inhibits downward movement of the device 122 relative to the mount 822, while engagement of the hook portions 250 with the main wall 830 inhibits front and back movement of the device 122 relative to the mount 822.
With the hook slots 252 supported by the main wall 830, the hook portions 250 further abut one of the side notch edges 854 and 856 adjacent thereto. Engagement of the hook portions 250 with the side notch edges 854 and 856 inhibits lateral movement of the device 122 relative to the mount 822. Further, the angle of the side notch edges 854 and 856 center the distal portion 150 relative to the proximal portion 820.
With the hook slots 252 supported by the main wall 830, the side flanges 272 engage the main wall 830 and possibly the secondary brace wall 834 to prevent rearward rotation of the device 122 about the pivot axis defined by the closed ends of the hook slots 252.
Additionally, when the hook slots 252 receive the main notch edge 852, the first guide flange 282 is below and adjacent to, or perhaps in contact with, the secondary brace wall 834. In the example shown, four of the stop edges 256 engage the secondary brace wall 834 to inhibit upward movement of the device 122 relative to the mount 822.
When the latch member 240 is in the latched configuration as shown in
In particular, the example latch assembly 222 is configured to be displaced from the latched position to the unlatched position as the device 122 is lowered and pivoted onto the mount 822. In particular, after the hook portion(s) 250 engage the main notch edge 852, allowing the device 122 to pivot causes the cam surfaces 294 on the engaging portions 290 of the latch member 240 to engage the secondary brace wall 834 such that a force is applied to the latch member 240 against the biasing force of the biasing member(s) 242. The latch member 240 is thus displaced into its unlatched configuration and is held there until the device 122 is substantially parallel to the main wall 830 of the mount 822. At this point, the engaging portion(s) 290 are aligned with the latch opening(s) 860. When the engaging portion(s) 290 are aligned with the latch opening(s) 860, the biasing member(s) 242 return the latch member(s) 240 to the latched configuration. At this point, the second example device attachment system 130 is in its latched configuration.
The process is substantially reversed to remove the device 122 from the mount 822. Initially, the handle portion 292 is grasped, and the latch member 240 is displaced against the force of the biasing member 242 such that the latch member 240 is in the unlatched position. At this point, the second example device attachment system 130 is in its unlatched configuration. The device 122 may be rotated upwardly about the pivot axis and lifted such that the distal portion 150 is disengaged from the proximal portion 820.
In the second example sports mounting system 822, the device 122 may be moved from the pole 124a, to the wall 124b, or to the post 124c. In this case, three of the mounts 822, each with an associated structure attachment systems 140a, 140b, or 140c, are used. With the structure attachment systems 140a, 140b, and/or 140c in place, the example sports mounting system incorporating the proximal portion 820 may thus be easily and quickly moved to various locations depending on the user's needs without the use of tools.
This application, U.S. patent application Ser. No. 15/620,575 filed Jun. 12, 2017, claims benefit of U.S. Provisional Application Ser. No. 62/478,039 filed Mar. 29, 2017. This application, U.S. patent application Ser. No. 15/620,575 filed Jun. 12, 2017, also claims benefit of U.S. Provisional Application Ser. No. 62/476,725 filed Mar. 25, 2017. This application, U.S. patent application Ser. No. 15/620,575 filed Jun. 12, 2017, also claims benefit of U.S. Provisional Application Ser. No. 62/467,096 filed Mar. 4, 2017. This application, U.S. patent application Ser. No. 15/620,575 filed Jun. 12, 2017, also claims benefit of U.S. Provisional Application Ser. No. 62/466,400 filed Mar. 3, 2017. This application, U.S. patent application Ser. No. 15/620,575 filed Jun. 12, 2017, also claims benefit of U.S. Provisional Application Ser. No. 62/464,455 filed Feb. 28, 2017. This application, U.S. patent application Ser. No. 15/620,575 filed Jun. 12, 2017, also claims benefit of U.S. Provisional Application Ser. No. 62/449,910 filed Jan. 24, 2017. The contents of all related applications are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3392980 | Ortega | Jul 1968 | A |
4040624 | Lee | Aug 1977 | A |
4395040 | White | Jul 1983 | A |
5022649 | Traub et al. | Jun 1991 | A |
5088672 | Neuendorf | Feb 1992 | A |
5240258 | Bateman | Aug 1993 | A |
5277432 | Bateman | Jan 1994 | A |
5279496 | Schroeder | Jan 1994 | A |
5342062 | Lance | Aug 1994 | A |
5346226 | Block | Sep 1994 | A |
5570880 | Nordgran | Nov 1996 | A |
5816955 | Nordgran | Oct 1998 | A |
5893807 | Aikens | Apr 1999 | A |
6056654 | Schroeder | May 2000 | A |
6808177 | Dehart | Oct 2004 | B2 |
7331882 | White | Feb 2008 | B1 |
7845646 | Weber | Dec 2010 | B1 |
8172231 | Massier | May 2012 | B2 |
8403329 | Krickovic | Mar 2013 | B2 |
8534672 | Brune | Sep 2013 | B2 |
8708294 | Lam | Apr 2014 | B2 |
8724037 | Massey | May 2014 | B1 |
9303959 | Doria | Apr 2016 | B2 |
9545552 | Buchweitz | Jan 2017 | B1 |
20020105477 | Bragg et al. | Aug 2002 | A1 |
20060261226 | Petrick | Nov 2006 | A1 |
20070234616 | Betham | Oct 2007 | A1 |
20080023915 | Morrow et al. | Jan 2008 | A1 |
20090163305 | Connerley | Jun 2009 | A1 |
20160258720 | Côté et al. | Sep 2016 | A1 |
20170205207 | Anderson | Jul 2017 | A1 |
Number | Date | Country |
---|---|---|
2018140511 | Aug 2018 | WO |
Entry |
---|
International Searching Authority, ISR & Written Opinion, PCT/US2018/015069, dated Apr. 12, 2018, 8 pages. |
Number | Date | Country | |
---|---|---|---|
20180207502 A1 | Jul 2018 | US |
Number | Date | Country | |
---|---|---|---|
62478039 | Mar 2017 | US | |
62476725 | Mar 2017 | US | |
62467096 | Mar 2017 | US | |
62466400 | Mar 2017 | US | |
62464455 | Feb 2017 | US | |
62449910 | Jan 2017 | US |